
sncosmo Documentation
Release 2.6.0

Kyle Barbary and contributors

Oct 22, 2021

CONTENTS

1 Installation 3

2 Supernova Models 5

3 Bandpasses 13

4 Magnitude Systems 15

5 Photometric Data 17

6 Spectra 21

7 Applying Cuts 25

8 Simulation 27

9 Registry 31

10 Directory Configuration 33

11 Examples 35

12 Reference / API 111

13 More. . . 113

Bibliography 125

Python Module Index 127

Index 129

i

ii

sncosmo Documentation, Release 2.6.0

SNCosmo is a Python library for supernova cosmology analysis. It aims to make such analysis both as flexible and
clear as possible.

CONTENTS 1

sncosmo Documentation, Release 2.6.0

2 CONTENTS

CHAPTER

ONE

INSTALLATION

SNCosmo works on Python 3.4+ and depends on the following Python packages:

• numpy

• scipy

• astropy

• extinction

1.1 Install using conda (recommended)

If you are using Anaconda or the conda package manager, you can install SNCosmo from the conda-forge channel:

conda install -c conda-forge sncosmo

1.2 Install using pip

First ensure that numpy and cython are installed. Then:

pip install sncosmo

Note: The --no-deps flag is optional, but highly recommended if you already have numpy, scipy and astropy installed,
since otherwise pip will sometimes try to “help” you by upgrading your Numpy installation, which may not always be
desired.

Note: If you get a PermissionError this means that you do not have the required administrative access to install
new packages to your Python installation. In this case you may consider using the --user option to install the package
into your home directory. You can read more about how to do this in the pip documentation.

Do not install sncosmo or other third-party packages using sudo unless you are fully aware of the risks.

Note: You will need a C compiler (e.g. gcc or clang) to be installed for the installation to succeed.

3

http://www.numpy.org/
http://www.scipy.org/
http://www.astropy.org
http://extinction.readthedocs.io
https://pip.pypa.io/en/latest/user_guide.html#user-installs

sncosmo Documentation, Release 2.6.0

1.3 Install latest development version

SNCosmo is being developed on github. To get the latest development version using git:

git clone git://github.com/sncosmo/sncosmo.git
cd sncosmo

then:

pip install -e .

This will install a development version of the SNCosmo package that automatically picks up any changes that you
made when you import sncosmo for the first time in a Python interpreter. If you make any edits to the Cython code
in SNCosmo (files with .c or .pyx extensions), then you will need to run this command again to compile that code for
your changes to be picked up.

1.4 Optional dependencies

Several additional packages are recommended for enabling optional functionality in SNCosmo.

• matplotlib for plotting functions.

• iminuit for light curve fitting using the Minuit minimizer in sncosmo.fit_lc.

• emcee for MCMC light curve parameter estimation in sncosmo.mcmc_lc.

• nestle for nested sampling light curve parameter estimation in sncosmo.nest_lc.

The corner package is also recommended for plotting results from the samplers sncosmo.mcmc_lc and sncosmo.
nest_lc, but is not used by any part of sncosmo.

4 Chapter 1. Installation

https://github.com/sncosmo/sncosmo
http://www.matplotlib.org/
http://iminuit.github.io/iminuit/
http://dan.iel.fm/emcee/
http://kbarbary.github.io/nestle/
https://github.com/dfm/corner.py

CHAPTER

TWO

SUPERNOVA MODELS

2.1 Getting Started

Create a model using the built-in “source” named 'hsiao':

>>> import sncosmo
>>> model = sncosmo.Model(source='hsiao')

Set the redshift, time-of-zero-phase and the amplitude:

>>> model.set(z=0.5, t0=55000., amplitude=1.e-10)

Generate synthetic photometry through an observer-frame bandpass:

>>> model.bandmag('desr', 'ab', [54990., 55000., 55020.])
array([24.82381795, 24.41496701, 25.2950865])

Equivalent values in photons / s / cm^2:

>>> model.bandflux('desr', [54990., 55000., 55020.])
array([7.22413301e-05, 1.05275209e-04, 4.68034980e-05])

Equivalent values scaled so that 1 is equivalent to an AB magnitude of 25:

>>> model.bandflux('desr', [54990., 55000., 55020.], zp=25., zpsys='ab')
array([1.17617737, 1.71400939, 0.7620183])

Generate an observer-frame spectrum at a given time and wavelengths (in ergs/s/cm^2/Angstrom):

>>> model.flux(54990., [4000., 4100., 4200.])
array([4.31210900e-20, 7.46619962e-20, 1.42182787e-19])

5

sncosmo Documentation, Release 2.6.0

2.2 Creating a model using a built-in source

A Model in sncosmo consists of

• One “source” A model of the spectral evolution of the source (e.g., a supernova).

• Zero or more “propagation effects” Models of how intervening structures (e.g., host galaxy dust, milky way
dust) affect the spectrum.

In the above example, we created a model with no propagation effects, using one of the built-in Source instances that
sncosmo knows about: 'hsiao'. See the full List of Built-in Sources that sncosmo knows about.

Note: In fact, the data for “built-in” sources are hosted remotely, downloaded as needed, and cached locally. So
the first time you load a given model, you need to be connected to the internet. You will see a progress bar as the
data are downloaded. By default, SNCosmo will use a subdirectory of the AstroPy cache directory for this purpose,
e.g., $HOME/.astropy/cache/sncosmo, but this can be changed by setting the data_dir configuration parameter
in $HOME/.astropy/config/sncosmo.cfg. See Directory Configuration for more information.

Some built-in source models have multiple versions, which can be explicitly retrieved using the get_source function:

>>> source = sncosmo.get_source('hsiao', version='2.0')
>>> model = sncosmo.Model(source=source)

2.3 Model parameters

Each model has a set of parameter names and values:

>>> model.param_names
['z', 't0', 'amplitude']
>>> model.parameters
array([0., 0., 1.])

These can also be retrieved as:

>>> model.get('z')
0.0
>>> model['z']
0.0

Parameter values can be set by any of the following methods:

>>> model.parameters[0] = 0.5
>>> model.parameters = [0.5, 0., 1.] # set the entire array
>>> model['z'] = 0.5
>>> model.set(z=0.5)
>>> model.set(z=0.5, amplitude=2.0) # Can specify multiple parameters
>>> model.update({'z': 0.5, 'amplitude': 2.0})

What do these parameters mean? The first two, z and t0 are common to all Model instances:

• z is the redshift of the source.

• t0 is the observer-frame time corresponding to the source’s phase=0.

6 Chapter 2. Supernova Models

sncosmo Documentation, Release 2.6.0

Note that in some sources phase=0 might be at explosion while others might be at max: the definition of phase is
arbitrary. However, observed time is always related to phase via time = t0 + phase * (1 + z)

The next, amplitude, is specific to the particular type of source. In this case, the source is a simple spectral timeseries
that can only be scaled up and down. Other sources could have other parameters that affect the shape of the spectrum
at each phase.

For a given model, you can set the amplitude (or x0 in case you are using a SALT model) according to a desired
absolute magnitude in a specific band by using the method set_source_peakabsmag(). Note that the redshift z
affects your result. Therefore, you could specify:

>>> model.set(z=1.6)
>>> model.set_source_peakabsmag(-19.0, 'bessellb', 'ab')

Specifically, for SALT models, it is recommended to call set_source_peakabsmag() after setting the other model
parameters, such as x1 and c. It probably won’t make a difference if you are using the 'bessellb' bandpass, but if
you were setting the absolute magnitude in another band, it would make a small difference.

The reason for this peculiarity is that “absolute magnitude” is not a parameter in the SALT2 model, per se. The
parameters are x0, x1, c, t0, and z. x0 is a simple multiplicative scaling factor on the whole spectral timeseries.
The set_source_peakabsmag() method is a convenience for setting x0 such that the integrated flux through a given
bandpass is as desired. Since the integrated flux depends on the spectral shape, it will depend on x1 and c.

2.4 Creating a model with a source and effect(s)

Let’s create a slightly more complex model. Again we will use the Hsiao spectral time series as a source, but this time
we will add host galaxy dust.

>>> dust = sncosmo.CCM89Dust()
>>> model = sncosmo.Model(source='hsiao',
... effects=[dust],
... effect_names=['host'],
... effect_frames=['rest'])

The model now has additional parameters that describe the dust, hostebv and hostr_v:

>>> model.param_names
['z', 't0', 'amplitude', 'hostebv', 'hostr_v']
>>> model.parameters
array([0. , 0. , 1. , 0. , 3.1])

These are the parameters of the CCM89Dust instance we created:

>>> dust.param_names
['ebv', 'r_v']

In the model, the parameter names are prefixed with the name of the effect (host).

At any time you can print the model to get a nicely formatted string representation of its components and current
parameter values:

>>> print(model)
<Model at 0x...>
source:

(continues on next page)

2.4. Creating a model with a source and effect(s) 7

sncosmo Documentation, Release 2.6.0

(continued from previous page)

class : TimeSeriesSource
name : hsiao
version : 3.0
phases : [-20, .., 85] days (22 points)
wavelengths: [1000, .., 25000] Angstroms (481 points)

effect (name='host' frame='rest'):
class : CCM89Dust
wavelength range: [1250, 33333] Angstroms

parameters:
z = 0.0
t0 = 0.0
amplitude = 1.0
hostebv = 0.0
hostr_v = 3.1000000000000001

Also, str(model) will return this string rather than printing it.

2.5 Adding Milky Way dust

Dust in the Milky Way will affect the shape of an observed supernova spectrum. It is important to take this into account
in our model when fitting the model to observed data. As with host galaxy dust treated above, we can model Milky
Way dust as a “propagation effect”. The only difference is that Milky Way dust is in the observer frame rather than the
supernova rest frame. Here, we create a model with dust in both the SN rest frame and the observer frame:

>>> dust = sncosmo.CCM89Dust()
>>> model = sncosmo.Model(source='hsiao',
... effects=[dust, dust],
... effect_names=['host', 'mw'],
... effect_frames=['rest', 'obs'])

We can see that the model includes four extra parameters (two describing the host galaxy dust and two describing the
milky way dust):

>>> model.param_names
['z', 't0', 'amplitude', 'hostebv', 'hostr_v', 'mwebv', 'mwr_v']
>>> model.parameters # default values
array([0. , 0. , 1. , 0. , 3.1, 0. , 3.1])

The host galaxy dust parameters are prefixed with 'host' and the Milky Way dust parameters are prefixed with 'mw'.
These are just the names we supplied when constructing the model. The effect names have no significance beyond
this. The effect frames, on the other hand, are significant. The only allowed values are 'rest' (rest frame) and 'obs'
(observer frame).

A typical use pattern is to get an estimate of the amount of Milky Way dust at the location of the supernova from a
dust map, and then to fix that amount of dust in the model. The following example illustrates how to do this using the
Schlegel, Finkbeiner and Davis (1998) dust map with the sfdmap package. First, load the dust map (do this only once):

>>> import sfdmap

>>> dustmap = sfdmap.SFDMap("/path/to/dust/maps")

8 Chapter 2. Supernova Models

http://github.com/kbarbary/sfdmap

sncosmo Documentation, Release 2.6.0

Now, for each SN you wish to fit, get the amount of dust at the SN location and set the mwebv model parameter
appropriately. For example, if the SN is located at RA=42.8 degrees, Dec=0 degrees:

>>> ebv = dustmap.ebv(42.8, 0.0)

>>> model.set(mwebv=ebv)

>>> # proceed with fitting the other model parameters to the data.

Note that we wish to fix the mwebv model parameter rather than fitting it to the data like the other parameters: We’re
supposing that this value is perfectly known from the dust map. Therefore, when using a function such as fit_lc to
fit the parameters, be sure not to include 'mwebv' in the list of parameters to vary.

2.6 Model spectrum

To retrieve a spectrum (in ergs / s / cm^2 / Angstrom) at a given observer-frame time and set of wavelengths:

>>> wave = np.array([3000., 3500., 4000., 4500., 5000., 5500.])
>>> model.flux(-5., wave)
array([5.29779465e-09, 7.77702880e-09, 7.13309678e-09,

5.68369041e-09, 3.06860759e-09, 2.59024291e-09])

We can supply a list or array of times and get a 2-d array back, representing the spectrum at each time:

>>> model.flux([-5., 2.], wave)
array([[5.29779465e-09, 7.77702880e-09, 7.13309678e-09,

5.68369041e-09, 3.06860759e-09, 2.59024291e-09],
[2.88166481e-09, 6.15186858e-09, 7.87880448e-09,

6.93919846e-09, 3.59077596e-09, 3.27623932e-09]])

Changing the model parameters changes the results:

>>> model.parameters
array([0., 0., 1., 0., 3.1])
>>> model.flux(-5., [4000., 4500.])
array([7.13309678e-09, 5.68369041e-09])
>>> model.set(amplitude=2., hostebv=0.1)
>>> model.flux(-5., [4000., 4500.])
array([9.39081327e-09, 7.86972003e-09])

2.7 Synthetic photometry

To integrate the spectrum through a bandpass, use the bandflux method:

>>> model.bandflux('sdssi', -5.)
180213.72886169454

Here we are using the SDSS I band, at time -5. days. The return value is in photons / s / cm^2. It is also possible to
supply multiple times or bands:

2.6. Model spectrum 9

sncosmo Documentation, Release 2.6.0

>>> model.bandflux('sdssi', [-5., 2.])
array([180213.72886169, 176662.68287381])
>>> model.bandflux(['sdssi', 'sdssz'], [-5., -5.])
array([180213.72886169, 27697.76705621])

Instead of returning flux in photons / s / cm^2, the flux can be normalized to a desired zeropoint by specifying the zp
and zpsys keywords, which can also be scalars, lists, or arrays.

>>> model.bandflux(['sdssi', 'sdssz'], [-5., -5.], zp=25., zpsys='ab')
array([5.01036850e+09, 4.74414435e+09])

Instead of flux, magnitude can be returned. It works very similarly to flux:

>>> model.bandmag('sdssi', 'ab', [0., 1.])
array([22.6255077 , 22.62566363])
>>> model.bandmag('sdssi', 'vega', [0., 1.])
array([22.26843273, 22.26858865])

We have been specifying the bandpasses as strings ('sdssi' and 'sdssz'). This works because these bandpasses
are in the sncosmo “registry”. However, this is merely a convenience. In place of strings, we could have specified the
actual Bandpass objects to which the strings correspond. See Bandpasses for more on how to directly create Bandpass
objects.

The magnitude systems work similarly to bandpasses: 'ab' and 'vega' refer to built-in MagSystem objects, but you
can also directly supply custom MagSystem objects. See Magnitude Systems for details.

2.8 Initializing Sources directly

You can initialize a source directly from your own template rather than using the built-in source templates.

2.8.1 Initializing a TimeSeriesSource

These sources are created directly from numpy arrays. Below, we build a very simple model, of a source with a flat
spectrum at all times, rising from phase -50 to 0, then declining from phase 0 to +50.

>>> import numpy as np
>>> phase = np.linspace(-50., 50., 11)
>>> disp = np.linspace(3000., 8000., 6)
>>> flux = np.repeat(np.array([[0.], [1.], [2.], [3.], [4.], [5.],
... [4.], [3.], [2.], [1.], [0.]]),
... 6, axis=1)
>>> source = sncosmo.TimeSeriesSource(phase, disp, flux)

Typically, you would then include this source in a Model:

>>> model = sncosmo.Model(source)

10 Chapter 2. Supernova Models

sncosmo Documentation, Release 2.6.0

2.8.2 Initializing a SALT2Source

The SALT2 model is initialized directly from data files representing the model. You can initialize it by giving it a path
to a directory containing the files.

>>> source = sncosmo.SALT2Source(modeldir='/path/to/dir')

By default, the initializer looks for files with names like 'salt2_template_0.dat', but this behavior can be altered
with keyword parameters:

>>> source = sncosmo.SALT2Source(modeldir='/path/to/dir',
... m0file='mytemplate0file.dat')

See SALT2Source for more details.

2.8. Initializing Sources directly 11

sncosmo Documentation, Release 2.6.0

12 Chapter 2. Supernova Models

CHAPTER

THREE

BANDPASSES

3.1 Constructing a Bandpass

Bandpass objects represent the transmission fraction of an astronomical filter as a function of dispersion (photon wave-
length, frequency or energy). They are basically simple containers for arrays of these values, with a couple special
features. To get a bandpass that is in the registry (built-in):

>>> import sncosmo
>>> band = sncosmo.get_bandpass('sdssi')
>>> band
<Bandpass 'sdssi' at 0x...>

To create a Bandpass directly, you can supply arrays of wavelength and transmission values:

>>> wavelength = [4000., 5000.]
>>> transmission = [1., 1.]
>>> sncosmo.Bandpass(wavelength, transmission, name='tophatg')
<Bandpass 'tophatg' at 0x...>

By default, the first argument is assumed to be wavelength in Angstroms. To specify a different dispersion unit, use a
unit from the astropy.units package:

>>> import astropy.units as u
>>> wavelength = [400., 500.]
>>> transmission = [1., 1.]
>>> Bandpass(wavelength, transmission, wave_unit=u.nm)
<Bandpass 'tophatg' at 0x...>

3.2 Using a Bandpass

A Bandpass acts like a continuous 1-d function, returning the transmission at supplied wavelengths (always in
Angstroms):

>>> band([4100., 4250., 4300.])
array([0., 1., 1.])

Note that the transmission is zero outside the defined wavelength range. Linear interpolation is used between the defined
wavelengths.

13

https://docs.astropy.org/en/stable/units/index.html#module-astropy.units

sncosmo Documentation, Release 2.6.0

Bnadpasses have a few other useful properties. You can get the range of wavelengths where the transmission is non-
zero:

>>> band.minwave(), band.maxwave()
(4000.0, 5000.0)

Or the transmission-weighted effective wavelength:

>>> band.wave_eff
4500.0

Or the name:

>>> band.name
'tophatg'

3.3 Adding Bandpasses to the Registry

You can create your own bandpasses and use them like built-ins by adding them to the registry. Suppose we want to
register the ‘tophatg’ bandpass we created:

>>> sncosmo.register(band, 'tophatg')

Or if band.name has been set:

>>> sncosmo.register(band) # registers band under band.name

After doing this, we can get the bandpass object by doing

>>> band = sncosmo.get_bandpass('tophatg')

Also, we can pass the string 'tophatg' to any function that takes a Bandpass object. This means that you can
create and register bandpasses at the top of a script, then just keep track of string identifiers throughout the rest of the
script.

14 Chapter 3. Bandpasses

CHAPTER

FOUR

MAGNITUDE SYSTEMS

SNCosmo has facilities for converting synthetic model photometry to magnitudes in a variety of magnitude systems
(or equivalently, scaling fluxes to a given zeropoint in a given magnitude system). For example, in the following code
snippet, the string 'ab' specifies that we want magnitudes on the AB magnitude system:

>>> model.bandmag('desr', 'ab', [54990., 55000., 55020.])

The string 'ab' here refers to a built-in magnitude system ('vega' is another option). Behind the scenes magnitude
systems are represented with MagSystem objects. As with Bandpass objects, most places in SNCosmo that require
a magnitude system can take either the name of a magnitude system in the registry or an actual MagSystem instance.
You can access these objects directly or create your own.

MagSystem objects represent the spectral flux density corresponding to magnitude zero in the given system and can
be used to convert physical fluxes (in photons/s/cm^2) to magnitudes. Here’s an example:

>>> ab = sncosmo.get_magsystem('ab')
>>> ab.zpbandflux('sdssg')
546600.83408598113

This example gives the number of counts (in photons) when integrating the AB spectrum (which happens to be F_nu
= 3631 Jansky at all wavelengths) through the SDSS g band. This works similarly for other magnitude systems:

>>> vega = sncosmo.get_magsystem('vega')
>>> vega.zpbandflux('sdssg')
597541.25707788975

You can see that the Vega spectrum is a bit brighter than the AB spectrum in this particular bandpass. Therefore, SDSS
g magnitudes given in Vega will be larger than if given in AB.

There are convenience methods for converting an observed flux in a bandpass to a magnitude:

>>> ab.band_flux_to_mag(1., 'sdssg')
14.344175725172901
>>> ab.band_mag_to_flux(14.344175725172901, 'sdssg')
0.99999999999999833

So, one count per second in this band is equivalent to an AB magnitude of about 14.34.

15

sncosmo Documentation, Release 2.6.0

4.1 “Composite” magnitude systems

Sometimes, photometric data is reported in “magnitude systems” that don’t correspond directly to any spectrophoto-
metric standard. One example is “SDSS magnitudes” which are like AB magnitudes but with an offset in each band.
These are represented in SNCosmo with the CompositeMagSystem class. For example:

>>> magsys = sncosmo.CompositeMagSystem(bands={'sdssg': ('ab', 0.01),
... 'sdssr': ('ab', 0.02)})

This defines a new magnitude system that knows about only two bandpasses. In this magnitude system, an object with
magnitude zero in AB would have a magntide of 0.01 in SDSS g and 0.02 in SDSS r. Indeed, you can see that the flux
corresponding to magnitude zero is slightly higher in this magnitude system than in AB:

>>> magsys.zpbandflux('sdssr')
502660.28545283229

>>> ab.zpbandflux('sdssr')
493485.70128115633

Since we’ve only defined the offsets for this magnitude system in a couple bands, using other bandpasses results in an
error:

>>> magsys.zpbandflux('bessellb')
ValueError: band not defined in composite magnitude system

16 Chapter 4. Magnitude Systems

CHAPTER

FIVE

PHOTOMETRIC DATA

5.1 Photometric data stored in AstroPy Table

In sncosmo, photometric data for a supernova is stored in an astropy Table: each row in the table is a photometric
observation. The table must contain certain columns. To see what such a table looks like, you can load an example
with the following function:

>>> data = sncosmo.load_example_data()
>>> print data

time band flux fluxerr zp zpsys
------------- ----- ----------------- -------------- ---- -----

55070.0 sdssg 0.813499900062 0.651728140824 25.0 ab
55072.0512821 sdssr -0.0852238865812 0.651728140824 25.0 ab
55074.1025641 sdssi -0.00681659003089 0.651728140824 25.0 ab
55076.1538462 sdssz 2.23929135407 0.651728140824 25.0 ab
55078.2051282 sdssg -0.0308977349373 0.651728140824 25.0 ab
55080.2564103 sdssr 2.35450321853 0.651728140824 25.0 ab
... etc ...

This example data table above has the minimum six columns necessary for sncosmo’s light curve fitting and plotting
functions to interpret the data. (There’s no harm in having more columns for other supplementary data.)

Additionally, metadata about the photometric data can be stored with the table: data.meta is an OrderedDict of the
metadata.

5.2 Including Covariance

If your table contains a column 'fluxcov' (or any similar name; see below) it will be interpreted as covariance between
the data points and will be used instead of the 'fluxerr' column when calculating a 𝜒2 value in fitting functions.
For each row, the 'fluxcov' column should be a length N array, where N is the number of rows in the table. In other,
words, table['fluxcov'] should have shape (N, N), where other columns like table['time'] have shape (N,).

As an example, let’s add a 'fluxcov' column to the example data table above.

>>> data['fluxcov'] = np.diag(data['fluxerr']**2)
>>> len(data)
40
>>> data['fluxcov'].shape
(40, 40)

(continues on next page)

17

https://docs.astropy.org/en/stable/api/astropy.table.Table.html#astropy.table.Table

sncosmo Documentation, Release 2.6.0

(continued from previous page)

diagonal elements are error squared:
>>> data['fluxcov'][0, 0]
0.45271884317377648

>>> data['fluxerr'][0]
0.67284384754100002

off diagonal elements are zero:
>>> data['fluxcov'][0, 1]
0.0

As is, this would be completely equivalent to just having the 'fluxerr' column. But now we have the flexibility to
represent non-zero off-diagonal covariance.

Note: When sub-selecting data from a table with covariance, be sure to use sncosmo.select_data. For example,
rather than table[mask], use sncosmo.select_data(table, mask). This ensures that the covariance column is
sliced appropriately! See the documentation for select_data for details.

5.3 Flexible column names

What if you’d rather call the time column 'date', or perhaps 'mjd'? Good news! SNCosmo is flexible about the
column names. For each column, it accepts a variety of alias names:

Col-
umn

Acceptable aliases (case-independent) Description Type

time ‘jd’, ‘mjd’, ‘mjdobs’, ‘time’, ‘date’,
‘mjd_obs’

Time of observation in days float

band ‘bandpass’, ‘band’, ‘filter’, ‘flt’ Bandpass of observation str
flux ‘f’, ‘flux’ Flux of observation float
fluxerr ‘flux_error’, ‘fluxerror’, ‘fluxerr’, ‘fe’,

‘flux_err’
Gaussian uncertainty on flux float

zp ‘zero_point’, ‘zeropoint’, ‘zeropt’, ‘zp’, ‘zpt’ Zeropoint corresponding to flux float
zpsys ‘zpmagsys’, ‘magsys’, ‘zpsys’ Magnitude system for zeropoint str
fluxcov ‘fluxcov’, ‘covariance’, ‘covmat’, ‘covar’,

‘cov’
Covariance between observations (array; op-
tional)

ndar-
ray

Note that each column must be present in some form or another, with no repeats. For example, you can have either a
'flux' column or a 'f' column, but not both.

The units of the flux and flux uncertainty are effectively given by the zeropoint system, with the zeropoint itself serving
as a scaling factor: For example, if the zeropoint is 25.0 and the zeropoint system is 'vega', a flux of 1.0 corresponds
to 10**(-25/2.5) times the integrated flux of Vega in the given bandpass.

18 Chapter 5. Photometric Data

sncosmo Documentation, Release 2.6.0

5.4 Reading and Writing photometric data from files

SNCosmo strives to be agnostic with respect to file format. In practice there are a plethora of different file formats,
both standard and non-standard, used to represent tables. Rather than picking a single supported file format, or worse,
creating yet another new “standard”, we choose to leave the file format mostly up to the user: A user can use any file
format as long as they can read their data into an astropy Table.

That said, SNCosmo does include a couple convenience functions for reading and writing tables of photometric data:
sncosmo.read_lc and sncosmo.write_lc:

>>> data = sncosmo.load_example_data()
>>> sncosmo.write_lc(data, 'test.txt')

This creates an output file test.txt that looks like:

@x1 0.5
@c 0.2
@z 0.5
@x0 1.20482820761e-05
@t0 55100.0
time band flux fluxerr zp zpsys
55070.0 sdssg 0.36351153597 0.672843847541 25.0 ab
55072.0512821 sdssr -0.200801295864 0.672843847541 25.0 ab
55074.1025641 sdssi 0.307494232981 0.672843847541 25.0 ab
55076.1538462 sdssz 1.08776103656 0.672843847541 25.0 ab
55078.2051282 sdssg -0.43667895645 0.672843847541 25.0 ab
55080.2564103 sdssr 1.09780966779 0.672843847541 25.0 ab
... etc ...

Read the file back in:

>>> data2 = sncosmo.read_lc('test.txt')

There are a few other available formats, which can be specified using the format keyword:

>>> data = sncosmo.read_lc('test.json', format='json')

The supported formats are listed below. If your preferred format is not included, use a standard reader/writer from
astropy or the Python universe.

Format
name

Description Notes

ascii (de-
fault)

ASCII with metadata lines marked
by ‘@’

Not readable by standard ASCII table parsers due to meta-
data lines.

json JavaScript Object Notation Good performance, but not as human-readable as ascii
salt2 SALT2 new-style data files
salt2-old SALT2 old-style data files

5.4. Reading and Writing photometric data from files 19

https://docs.astropy.org/en/stable/api/astropy.table.Table.html#astropy.table.Table

sncosmo Documentation, Release 2.6.0

5.5 Manipulating data tables

Because photometric data tables are astropy Tables, they can be manipulated any way that Tables can. Here’s a few
things you might want to do.

Rename a column:

>>> data.rename_column('oldname', 'newname')

Add a column:

>>> data['zp'] = 26.

Add a constant value to all the entries in a given column:

>>> data['zp'] += 0.03

See the documentation on astropy tables for more information.

20 Chapter 5. Photometric Data

CHAPTER

SIX

SPECTRA

Spectroscopic observations are supported in sncosmo with the Spectrum class. A spectrum object can be created
from a list of wavelengths and flux values:

>>> wave, flux, fluxerr = sncosmo.load_example_spectrum_data()
>>> spectrum = sncosmo.Spectrum(wave, flux)

By default, the wavelengths are assumed to be in angstroms and the flux values as a spectral flux density (erg / s / cm^2
/ A).

6.1 Uncertainties

A spectrum can have associated uncertainties. This can be either uncorrelated uncertainties for each spectral element:

>>> spectrum = sncosmo.Spectrum(wave, flux, fluxerr)

or a full covariance matrix:

>>> fluxcov = np.diag(fluxerr**2) + 1e-5 * np.max(flux)**2
>>> spectrum = sncosmo.Spectrum(wave, flux, fluxcov=fluxcov)

All operations will take these uncertanties into account.

6.2 Synthetic photometry

Synthetic photometry can be calculated on a spectrum using any of the bandpasses available in sncosmo:

>>> spectrum.bandflux('sdssg')
6.417843339246818

Synthetic photometry can be calculated on multiple bands simultaneously:

>>> spectrum.bandflux(['sdssg', 'sdssr', 'sdssi'])
array([6.41784334, 5.37683496, 2.8626649])

If a zeropoint and magnitude system are specified, then the bandflux is returned in that system (otherwise it is in photons
/ s / cm^2 by default).

>>> spectrum.bandflux(['sdssg', 'sdssr', 'sdssi'], zp=25., zpsys='ab')
array([117413.72315598, 108956.25581652, 79592.47424074])

21

sncosmo Documentation, Release 2.6.0

Optionally, the full covariance matrix between the bandfluxes can also be calculated:

>>> spectrum.bandfluxcov(['sdssg', 'sdssr', 'sdssi'], zp=25., zpsys='ab')
(array([117413.72315598, 108956.25581652, 79592.47424074]),
array([[1546972.78077853, 874550.34470817, 1287550.14818921],

[874550.34470817, 2479812.26652077, 2226272.0481113],
[1287550.14818921, 2226272.0481113 , 3805168.84485814]]))

A band magnitude can be evaluated in a specific magnitude system:

>>> spectrum.bandmag(['sdssg', 'sdssr', 'sdssi'], magsys='ab')
array([12.32570285, 12.40686957, 12.74781999])

6.3 Rebinning a spectrum

A spectrum can be rebinned with arbitrary wavelength bins. This returns a new Spectrum object.

>>> binned_spectrum = spectrum.rebin(np.arange(3500, 6000, 100))

Rebinning introduces covariance between adjacent spectral elements if the bin edges in the original spectrum don’t line
up with the bin edges in the rebinned spectrum. This covariance is properly propagated.

6.4 Fitting with spectra

Spectra can be used in fits. Any combination of spectra and photometry is allowed. To fit spectra, the times at which
the spectra were taken must be specified. For example, to fit a single spectrum:

Create the spectrum object, and specify the time at which it was taken.
>>> spectrum = sncosmo.Spectrum(wave, flux, fluxerr, time=20.)

Fit a model to the spectrum.
>>> model = sncosmo.Model(source='hsiao-subsampled')
>>> sncosmo.fit_lc(model=model, spectra=spectrum,
... vparam_names=['amplitude', 't0', 'z'],
... bounds={'z': (0., 0.3)})
(success: True

message: 'Minimization exited successfully.'
ncall: 108
chisq: 576.7111360163605
ndof: 597

param_names: ['z', 't0', 'amplitude']
parameters: array([9.96571945e-02, 1.80278503e+01, 1.00650322e-05])

vparam_names: ['z', 't0', 'amplitude']
covariance: array([[1.17946556e-07, 1.64336679e-05, -5.21279026e-12],

[1.64336679e-05, 1.70047614e-02, -4.60755668e-09],
[-5.21279026e-12, -4.60755668e-09, 2.91915780e-15]])

errors: OrderedDict([('z', 0.00034343314287464677),
('t0', 0.13040215158608248),
('amplitude', 5.4029230945864686e-08)])

nfit: 1
(continues on next page)

22 Chapter 6. Spectra

sncosmo Documentation, Release 2.6.0

(continued from previous page)

data_mask: None,
<sncosmo.models.Model at 0x7fa30159a6d0>)

Other valid signatures are:

photometry only
>>> sncosmo.fit_lc(photometry, model, ...)

a single spectrum
>>> sncosmo.fit_lc(model=model, spectra=spectrum, ...)

multiple spectra
>>> sncosmo.fit_lc(model=model, spectra=[spec_1, spec_2], ...)

spectra and photometry simultaneously
>>> sncosmo.fit_lc(photometry, model, spectra=[spec_1, spec_2], ...)

6.4. Fitting with spectra 23

sncosmo Documentation, Release 2.6.0

24 Chapter 6. Spectra

CHAPTER

SEVEN

APPLYING CUTS

It is useful to be able to apply “cuts” to data before trying to fit a model to the data. This is particularly important when
using some of the “guessing” algorithms in fit_lc and nest_lc that use a minimum signal-to-noise ratio to pick
“good” data points. These algorithms will raise an exception if there are no data points meeting the requirements, so it
is advisable to check if the data meets the requirements beforehand.

7.1 Signal-to-noise ratio cuts

Require at least one datapoint with signal-to-noise ratio (S/N) greater than 5 (in any band):

>>> passes = np.max(data['flux'] / data['fluxerr']) > 5.
>>> passes
True

Require two bands each with at least one datapoint having S/N > 5:

>>> mask = data['flux'] / data['fluxerr'] > 5.
>>> passes = len(np.unique(data['band'][mask])) >= 2
>>> passes
True

25

sncosmo Documentation, Release 2.6.0

26 Chapter 7. Applying Cuts

CHAPTER

EIGHT

SIMULATION

First, define a set of “observations”. These are the properties of our observations: the time, bandpass and depth.

import sncosmo
from astropy.table import Table
obs = Table({'time': [56176.19, 56188.254, 56207.172],

'band': ['desg', 'desr', 'desi'],
'gain': [1., 1., 1.],
'skynoise': [191.27, 147.62, 160.40],
'zp': [30., 30., 30.],
'zpsys':['ab', 'ab', 'ab']})

print obs

skynoise zpsys band gain time zp
-------- ----- ---- ---- --------- ----
191.27 ab desg 1.0 56176.19 30.0
147.62 ab desr 1.0 56188.254 30.0
160.4 ab desi 1.0 56207.172 30.0

Suppose we want to simulate a SN with the SALT2 model and the following parameters:

model = sncosmo.Model(source='salt2')
params = {'z': 0.4, 't0': 56200.0, 'x0':1.e-5, 'x1': 0.1, 'c': -0.1}

To get the light curve for this single SN, we’d do:

lcs = sncosmo.realize_lcs(obs, model, [params])
print lcs[0]

time band flux fluxerr zp zpsys
--------- ---- ------------- ------------- ---- -----
56176.19 desg 96.0531272705 191.27537908 30.0 ab
56188.254 desr 456.360196623 149.22627064 30.0 ab
56207.172 desi 655.40885611 162.579572369 30.0 ab

Note that we’ve passed the function a one-element list, [params], and gotten back a one-element list in return. (The
realize_lcs function is designed to operate on lists of SNe for convenience.)

27

sncosmo Documentation, Release 2.6.0

8.1 Generating SN parameters

We see above that it is straightforward to simulate SNe once we already know the parameters of each one. But what if
we want to pick SN parameters from some defined distribution?

Suppose we want to generate SN parameters for all the SNe we would find in a given search area over a defined period
of time. We start by defining an area and time period, as well as a maximum redshift to consider:

area = 1. # area in square degrees
tmin = 56175. # minimum time
tmax = 56225. # maximum time
zmax = 0.7

First, we’d like to get the number and redshifts of all SNe that occur over our 1 square degree and 50 day time period:

redshifts = list(sncosmo.zdist(0., zmax, time=(tmax-tmin), area=area))
print len(redshifts), "SNe"
print "redshifts:", redshifts

9 SNe
redshifts: [0.4199710008856507, 0.3500118339133868, 0.5915676316485601, 0.
→˓5857452631151785, 0.49024466410556855, 0.5732679644841575, 0.6224436826380927, 0.
→˓5853477892182203, 0.5522300320124105]

Generate a list of SN parameters using these redshifts, drawing x1 and c from normal distributions:

from numpy.random import uniform, normal
params = [{'x0':1.e-5, 'x1':normal(0., 1.), 'c':normal(0., 0.1),

't0':uniform(tmin, tmax), 'z': z}
for z in redshifts]

for p in params:
print p

{'z': 0.4199710008856507, 'x0': 1e-05, 'x1': -0.9739877070754421, 'c': -0.
→˓1465835504611458, 't0': 56191.57686616353}
{'z': 0.3500118339133868, 'x0': 1e-05, 'x1': 0.04454878604727126, 'c': -0.
→˓04920811869083081, 't0': 56222.76963606611}
{'z': 0.5915676316485601, 'x0': 1e-05, 'x1': -0.26765265677262423, 'c': -0.
→˓06456008680932701, 't0': 56211.706219411404}
{'z': 0.5857452631151785, 'x0': 1e-05, 'x1': 0.8255953341731204, 'c': 0.
→˓08520083775049729, 't0': 56209.33583211229}
{'z': 0.49024466410556855, 'x0': 1e-05, 'x1': -0.12051827966517584, 'c': -0.
→˓09490756669333822, 't0': 56189.37571007927}
{'z': 0.5732679644841575, 'x0': 1e-05, 'x1': 0.3051310078192594, 'c': -0.
→˓10967604820261241, 't0': 56198.04368422346}
{'z': 0.6224436826380927, 'x0': 1e-05, 'x1': -0.6329407028587257, 'c': -0.
→˓009789183239376284, 't0': 56179.88133113836}
{'z': 0.5853477892182203, 'x0': 1e-05, 'x1': 0.6373371286596669, 'c': 0.
→˓05151693090038232, 't0': 56212.04579735962}
{'z': 0.5522300320124105, 'x0': 1e-05, 'x1': 0.04762095339856289, 'c': -0.
→˓005018877828783951, 't0': 56182.14827040906}

So far so good. The only problem is that x0 doesn’t vary. We’d like it to be randomly distributed with some scatter
around the Hubble line, so it should depend on the redshift. Here’s an alternative:

28 Chapter 8. Simulation

sncosmo Documentation, Release 2.6.0

params = []
for z in redshifts:

mabs = normal(-19.3, 0.3)
model.set(z=z)
model.set_source_peakabsmag(mabs, 'bessellb', 'ab')
x0 = model.get('x0')
p = {'z':z, 't0':uniform(tmin, tmax), 'x0':x0, 'x1': normal(0., 1.), 'c': normal(0.,␣

→˓0.1)}
params.append(p)

for p in params:
print p

{'c': -0.060104568346581566, 'x0': 2.9920355958896461e-05, 'z': 0.4199710008856507, 'x1
→˓': -0.677121283126299, 't0': 56217.93979718883}
{'c': 0.10405991801014292, 'x0': 2.134500759148091e-05, 'z': 0.3500118339133868, 'x1': 1.
→˓6034252041294512, 't0': 56218.008314206476}
{'c': -0.14777109151711296, 'x0': 7.9108889725043354e-06, 'z': 0.5915676316485601, 'x1':␣
→˓-2.2082282760850993, 't0': 56218.013686428785}
{'c': 0.056034777154805086, 'x0': 6.6457371815973038e-06, 'z': 0.5857452631151785, 'x1':␣
→˓0.675413080007434, 't0': 56189.03517395757}
{'c': -0.0709158052635228, 'x0': 1.2228145655148946e-05, 'z': 0.49024466410556855, 'x1':␣
→˓0.5449847454420981, 't0': 56198.02895700289}
{'c': -0.22101146234021096, 'x0': 7.4299221264917702e-06, 'z': 0.5732679644841575, 'x1':␣
→˓-1.543245858395605, 't0': 56189.04585414441}
{'c': 0.06964843664572477, 'x0': 9.7121906557832662e-06, 'z': 0.6224436826380927, 'x1':␣
→˓1.7419604610283943, 't0': 56212.827270197355}
{'c': 0.07320513053870191, 'x0': 3.22205341646521e-06, 'z': 0.5853477892182203, 'x1': -0.
→˓39658066375434153, 't0': 56200.421464066916}
{'c': 0.18555773972769227, 'x0': 7.5955258508017471e-06, 'z': 0.5522300320124105, 'x1': -
→˓0.24463691193386283, 't0': 56190.492271332616}

Now we can generate the lightcurves for these parameters:

lcs = sncosmo.realize_lcs(obs, model, params)
print lcs[0]

time band flux fluxerr zp zpsys
--------- ---- ------------- ------------ ---- -----
56176.19 desg 6.70520005464 191.27 30.0 ab
56188.254 desr 106.739113709 147.62 30.0 ab
56207.172 desi 1489.7521011 164.62420476 30.0 ab

Note that the “true” parameters are saved in the metadata of each SN:

lcs[0].meta

{'c': -0.060104568346581566,
't0': 56217.93979718883,
'x0': 2.9920355958896461e-05,
'x1': -0.677121283126299,
'z': 0.4199710008856507}

8.1. Generating SN parameters 29

sncosmo Documentation, Release 2.6.0

30 Chapter 8. Simulation

CHAPTER

NINE

REGISTRY

9.1 What is it?

The registry (sncosmo.registry) is responsible for translating string identifiers to objects, for user convenience. For
example, it is used in sncosmo.get_bandpass and sncosmo.get_source to return a Bandpass or sncosmo.Model
object based on the name of the bandpass or model:

>>> sncosmo.get_bandpass('sdssi')
<Bandpass 'sdssi' at 0x28e7c90>

It is also used in methods like bandflux to give it the ability to accept either a Bandpass object or the name of a
bandpass:

>>> model = sncosmo.Model(source='hsiao')
>>> model.bandflux('sdssg', 0.) # works, thanks to registry.

Under the covers, the bandflux method retrieves the Bandpass corresponding to 'sdssg' by calling the sncosmo.
get_bandpass function.

The registry is actually quite simple: it basically amounts to a dictionary and a few functions for accessing the dictionary.
Most of the time, a user doesn’t need to know anything about the registry. However, it is useful if you want to add your
own “built-ins” or change the name of existing ones.

9.2 Using the registry to achieve custom “built-ins”

There are a small set of “built-in” models, bandpasses, and magnitude systems. But what if you want additional ones?

Create a file mydefs.py that registers all your custom definitions:

contents of mydefs.py
import numpy as np
import sncosmo

wave = np.array([4000., 4200., 4400., 4600., 4800., 5000.])
trans = np.array([0., 1., 1., 1., 1., 0.])
band = sncosmo.Bandpass(wave, trans, name='tophatg')

sncosmo.registry.register(band)

Make sure mydefs.py is somewhere in your $PYTHONPATH or the directory you are running your main script from.
Now in your script import your definitions at the beginning:

31

sncosmo Documentation, Release 2.6.0

>>> import sncosmo
>>> import mydefs
>>> # ... proceed as normal
>>> # you can now use 'tophatg' as a built-in

9.3 Changing the name of built-ins

To change the name of the 'sdssg' band to 'SDSS_G':

contents of mydefs.py
import sncosmo

band = sncosmo.get_bandpass('sdssg')
band.name = 'SDSS_G'
sncosmo.register(band)

9.4 Large built-ins

What if your built-ins are really big or you have a lot of them? You might only want to load them as they are
needed, rather than having to load everything into memory when you do import mydefs. You can use the sncosmo.
registry.register_loader function. Suppose we have a bandpass that requires a huge data file (In reality it is
unlikely that loading bandpasses would take a noticeable amount of time, but it might for models or spectra.):

contents of mydefs.py
import sncosmo

def load_bandpass(filename, name=None, version=None):
...
read data from filename, create a Bandpass object, "band"
...
return band

filename = 'path/to/datafile/for/huge_tophatg'
sncosmo.register_loader(

sncosmo.Bandpass, # class of object returned.
'huge_tophatg', # name
load_bandpass, # function that does the loading
[filename] # arguments to pass to function
)

Now when you import mydefs the registry will know how to load the Bandpass named 'huge_tophatg' when it
is needed. When loaded, it will be saved in memory so that subsequent operations don’t need to load it again.

32 Chapter 9. Registry

CHAPTER

TEN

DIRECTORY CONFIGURATION

The “built-in” Sources and Spectra in SNCosmo depend on some sizable data files. These files are hosted remotely,
downloaded as needed, and cached locally. This all happens automatically, but it is helpful to know where the files are
stored if you want to inspect them or share a common download directory between multiple users.

By default, SNCosmo will create and use an sncosmo subdirectory in the AstroPy cache directory for this purpose.
For example, $HOME/.astropy/cache/sncosmo. After using a few models and spectra for the first time, here is what
that directory might look like:

$ tree ~/.astropy/cache/sncosmo
/home/kyle/.astropy/cache/sncosmo

models
hsiao

Hsiao_SED_V3.fits
sako

S11_SDSS-000018.SED
S11_SDSS-001472.SED
S11_SDSS-002000.SED

spectra
alpha_lyr_stis_007.fits
bd_17d4708_stisnic_005.fits

You can see that within the top-level $HOME/.astropy/cache/sncosmo directory, a particular directory structure is
created. This directory structure is fixed in the code, so it’s best not to move things around within the top-level directory.
If you do, sncosmo will think the data have not been downloaded and will re-download them.

10.1 Configuring the Directories

What if you would rather use a different directory to store downloaded data? Perhaps you’d rather the data not be in a
hidden directory, or perhaps there are multiple users who wish to use a shared data directory. There are two options:

1. Set the environment variable SNCOSMO_DATA_DIR to the directory you wish to use. For example, in bash:

export SNCOSMO_DATA_DIR=/home/user/data/sncosmo

If this environment variable is set, it takes precedence over the second option (below).

2. Set the data_dir variable in the sncosmo configuartion file. This file is found in the astropy configuration
directory, e.g., $HOME/.astropy/config/sncosmo.cfg. When you import sncosmo it checks for this file
and creates a default one if it doesn’t exist. The default one looks like this:

33

sncosmo Documentation, Release 2.6.0

$ cat ~/.astropy/config/sncosmo.cfg

Directory containing SFD (1998) dust maps, with names:
'SFD_dust_4096_ngp.fits' and 'SFD_dust_4096_sgp.fits'
Example: sfd98_dir = /home/user/data/sfd98
sfd98_dir = None

Directory where sncosmo will store and read downloaded data resources.
If None, ASTROPY_CACHE_DIR/sncosmo will be used.
Example: data_dir = /home/user/data/sncosmo
data_dir = None

To change the data directory, simply uncomment the last line and set it to the desired directory. You can
even move the data directory around, as long as you update this configuration parameter accordingly.

orphan

34 Chapter 10. Directory Configuration

CHAPTER

ELEVEN

EXAMPLES

11.1 Fitting a light curve

This example shows how to fit the parameters of a SALT2 model to photometric light curve data.

First, we’ll load an example of some photometric data.

import sncosmo

data = sncosmo.load_example_data()

print(data)

Out:

time band flux fluxerr zp zpsys
------------- ----- --------------- -------------- ---- -----

55070.0 sdssg 0.36351153597 0.672843847541 25.0 ab
55072.0512821 sdssr -0.200801295864 0.672843847541 25.0 ab
55074.1025641 sdssi 0.307494232981 0.672843847541 25.0 ab
55076.1538462 sdssz 1.08776103656 0.672843847541 25.0 ab
55078.2051282 sdssg -0.43667895645 0.672843847541 25.0 ab
55080.2564103 sdssr 1.09780966779 0.672843847541 25.0 ab
55082.3076923 sdssi 3.7562685627 0.672843847541 25.0 ab
55084.3589744 sdssz 5.34858894966 0.672843847541 25.0 ab
55086.4102564 sdssg 2.82614187269 0.672843847541 25.0 ab
55088.4615385 sdssr 7.56547045054 0.672843847541 25.0 ab

...
55129.4871795 sdssr 2.6597485586 0.672843847541 25.0 ab
55131.5384615 sdssi 3.99520404021 0.672843847541 25.0 ab
55133.5897436 sdssz 5.73989458094 0.672843847541 25.0 ab
55135.6410256 sdssg 0.330702283107 0.672843847541 25.0 ab
55137.6923077 sdssr 0.565286726579 0.672843847541 25.0 ab
55139.7435897 sdssi 3.04318346795 0.672843847541 25.0 ab
55141.7948718 sdssz 5.62692686384 0.672843847541 25.0 ab
55143.8461538 sdssg -0.722654789013 0.672843847541 25.0 ab
55145.8974359 sdssr 1.12091764262 0.672843847541 25.0 ab
55147.9487179 sdssi 2.1246695264 0.672843847541 25.0 ab

55150.0 sdssz 5.3482175645 0.672843847541 25.0 ab
Length = 40 rows

35

sncosmo Documentation, Release 2.6.0

An important additional note: a table of photometric data has a band column and a zpsys column that use strings to
identify the bandpass (e.g., 'sdssg') and zeropoint system ('ab') of each observation. If the bandpass and zeropoint
systems in your data are not built-ins known to sncosmo, you must register the corresponding Bandpass or MagSystem
to the right string identifier using the registry.

create a model
model = sncosmo.Model(source='salt2')

run the fit
result, fitted_model = sncosmo.fit_lc(

data, model,
['z', 't0', 'x0', 'x1', 'c'], # parameters of model to vary
bounds={'z':(0.3, 0.7)}) # bounds on parameters (if any)

Out:

Downloading http://sncosmo.github.io/data/models/salt2/salt2-4.tar.gz [Done]
Downloading http://sncosmo.github.io/data/bandpasses/sdss/sdss_g.dat [Done]
Downloading http://sncosmo.github.io/data/bandpasses/sdss/sdss_r.dat [Done]
Downloading http://sncosmo.github.io/data/bandpasses/sdss/sdss_i.dat [Done]
Downloading http://sncosmo.github.io/data/bandpasses/sdss/sdss_z.dat [Done]

The first object returned is a dictionary-like object where the keys can be accessed as attributes in addition to the typical
dictionary lookup like result['ncall']:

print("Number of chi^2 function calls:", result.ncall)
print("Number of degrees of freedom in fit:", result.ndof)
print("chi^2 value at minimum:", result.chisq)
print("model parameters:", result.param_names)
print("best-fit values:", result.parameters)
print("The result contains the following attributes:\n", result.keys())

Out:

Number of chi^2 function calls: 133
Number of degrees of freedom in fit: 35
chi^2 value at minimum: 33.80988236076306
model parameters: ['z', 't0', 'x0', 'x1', 'c']
best-fit values: [5.15154859e-01 5.51004778e+04 1.19625368e-05 4.67270999e-01
1.93951997e-01]
The result contains the following attributes:
dict_keys(['success', 'message', 'ncall', 'chisq', 'ndof', 'param_names', 'parameters',
→˓'vparam_names', 'covariance', 'errors', 'nfit', 'data_mask'])

The second object returned is a shallow copy of the input model with the parameters set to the best fit values. The input
model is unchanged.

sncosmo.plot_lc(data, model=fitted_model, errors=result.errors)

36 Chapter 11. Examples

sncosmo Documentation, Release 2.6.0

Out:

<Figure size 780x670 with 8 Axes>

Suppose we already know the redshift of the supernova we’re trying to fit. We want to set the model’s redshift to the
known value, and then make sure not to vary z in the fit.

model.set(z=0.5) # set the model's redshift.
result, fitted_model = sncosmo.fit_lc(data, model,

['t0', 'x0', 'x1', 'c'])
sncosmo.plot_lc(data, model=fitted_model, errors=result.errors)

11.1. Fitting a light curve 37

sncosmo Documentation, Release 2.6.0

Out:

<Figure size 780x670 with 8 Axes>

Total running time of the script: (0 minutes 2.275 seconds)

11.2 Using a custom fitter or sampler

How to use your own minimizer or MCMC sampler for fitting light curves.

SNCosmo has three functions for model parameter estimation based on photometric data: sncosmo.fit_lc,
sncosmo.mcmc_lc and sncosmo.nest_lc. These are wrappers around external minimizers or samplers (respec-
tively: iminuit, emcee and nestle). However, one may wish to experiment with a custom fitting or sampling method.

Here, we give a minimal example of using the L-BFGS-B minimizer from scipy.

import numpy as np
from scipy.optimize import fmin_l_bfgs_b
import sncosmo

(continues on next page)

38 Chapter 11. Examples

sncosmo Documentation, Release 2.6.0

(continued from previous page)

model = sncosmo.Model(source='salt2')
data = sncosmo.load_example_data()

Define an objective function that we will pass to the minimizer.
The function arguments must comply with the expectations of the specfic
minimizer you are using.
def objective(parameters):

model.parameters[:] = parameters # set model parameters

evaluate model fluxes at times/bandpasses of data
model_flux = model.bandflux(data['band'], data['time'],

zp=data['zp'], zpsys=data['zpsys'])

calculate and return chi^2
return np.sum(((data['flux'] - model_flux) / data['fluxerr'])**2)

starting parameter values in same order as `model.param_names`:
start_parameters = [0.4, 55098., 1e-5, 0., 0.] # z, t0, x0, x1, c

parameter bounds in same order as `model.param_names`:
bounds = [(0.3, 0.7), (55080., 55120.), (None, None), (None, None),

(None, None)]

parameters, val, info = fmin_l_bfgs_b(objective, start_parameters,
bounds=bounds, approx_grad=True)

print(parameters)

Out:

[4.25872745e-01 5.50980000e+04 1.10751214e-05 -4.88112786e-03
3.53962673e-01]

The built-in parameter estimation functions in sncosmo take care of setting up the likelihood function in the way that
the underlying fitter or sampler expects. Additionally, they set guesses and bounds and package results up in a way that
is as consistent as possible. For users wishing use a custom minimizer or sampler, it can be instructive to look at the
source code for these functions.

Total running time of the script: (0 minutes 0.505 seconds)

11.3 Creating a new Source class

Extending sncosmo with a custom type of Source.

A Source is something that specifies a spectral timeseries as a function of an arbitrary number of parameters. For
example, the SALT2 model has three parameters (x0, x1 and c) that determine a unique spectrum as a function of
phase. The SALT2Source class implements the behavior of the model: how the spectral time series depends on those
parameters.

If you have a spectral timeseries model that follows the behavior of one of the existing classes, such as
TimeSeriesSource, great! There’s no need to write a custom class. However, suppose you want to implement a
model that has some new parameterization. In this case, you need a new class that implements the behavior.

11.3. Creating a new Source class 39

sncosmo Documentation, Release 2.6.0

In this example, we implement a new type of source model. Our model is a linear combination of two spectral time
series, with a parameter w that determines the relative weight of the models.

import numpy as np
from scipy.interpolate import RectBivariateSpline
import sncosmo

class ComboSource(sncosmo.Source):

_param_names = ['amplitude', 'w']
param_names_latex = ['A', 'w'] # used in plotting display

def __init__(self, phase, wave, flux1, flux2, name=None, version=None):
self.name = name
self.version = version
self._phase = phase
self._wave = wave

ensure that fluxes are on the same scale
flux2 = flux1.max() / flux2.max() * flux2

self._model_flux1 = RectBivariateSpline(phase, wave, flux1, kx=3, ky=3)
self._model_flux2 = RectBivariateSpline(phase, wave, flux2, kx=3, ky=3)
self._parameters = np.array([1., 0.5]) # initial parameters

def _flux(self, phase, wave):
amplitude, w = self._parameters
return amplitude * ((1.0 - w) * self._model_flux1(phase, wave) +

w * self._model_flux2(phase, wave))

. . . and that’s all that we need to define!: A couple class attributes (_param_names and param_names_latex, an
__init__ method, and a _flux method. The _flux method is guaranteed to be passed numpy arrays for phase and
wavelength.

We can now initialize an instance of this source from two spectral time series:

#Just as an example, we'll use some undocumented functionality in
sncosmo to download the Nugent Ia and 2p templates. Don't rely on this
the `DATADIR` object, or these paths in your code though, as these are
subject to change between version of sncosmo!
from sncosmo.builtins import DATADIR
phase1, wave1, flux1 = sncosmo.read_griddata_ascii(

DATADIR.abspath('models/nugent/sn1a_flux.v1.2.dat'))
phase2, wave2, flux2 = sncosmo.read_griddata_ascii(

DATADIR.abspath('models/nugent/sn2p_flux.v1.2.dat'))

In our __init__ method we defined above, the two fluxes need to be on
the same grid, so interpolate the second onto the first:
flux2_interp = RectBivariateSpline(phase2, wave2, flux2)(phase1, wave1)

source = ComboSource(phase1, wave1, flux1, flux2_interp, name='sn1a+sn2p')

Out:

40 Chapter 11. Examples

sncosmo Documentation, Release 2.6.0

Downloading http://c3.lbl.gov/nugent/templates/sn1a_flux.v1.2.dat.gz [Done]
Downloading http://c3.lbl.gov/nugent/templates/sn2p_flux.v1.2.dat.gz [Done]

We can get a summary of the Source we created:

print(source)

Out:

class : ComboSource
name : 'sn1a+sn2p'
version : None
phases : [0, .., 90] days
wavelengths: [1000, .., 25000] Angstroms
parameters:
amplitude = 1.0
w = 0.5

Get a spectrum at phase 10 for different parameters:

from matplotlib import pyplot as plt

wave = np.linspace(2000.0, 10000.0, 500)
for w in (0.0, 0.2, 0.4, 0.6, 0.8, 1.0):

source.set(w=w)
plt.plot(wave, source.flux(10., wave), label='w={:3.1f}'.format(w))

plt.legend()
plt.show()

11.3. Creating a new Source class 41

sncosmo Documentation, Release 2.6.0

The w=0 spectrum is that of the Ia model, the w=1 spectrum is that of the IIp model, while intermediate spectra are
weighted combinations.

We can even fit the model to some data!

model = sncosmo.Model(source=source)
data = sncosmo.load_example_data()
result, fitted_model = sncosmo.fit_lc(data, model,

['z', 't0', 'amplitude', 'w'],
bounds={'z': (0.2, 1.0),

'w': (0.0, 1.0)})

sncosmo.plot_lc(data, model=fitted_model, errors=result.errors)

42 Chapter 11. Examples

sncosmo Documentation, Release 2.6.0

Out:

<Figure size 780x670 with 8 Axes>

The fact that the fitted value of w is closer to 0 than 1 indicates that the light curve looks more like the Ia template than
the IIp template. This is generally what we expected since the example data here was generated from a Ia template
(although not the Nugent template!).

Total running time of the script: (0 minutes 2.984 seconds)

11.3. Creating a new Source class 43

sncosmo Documentation, Release 2.6.0

11.4 Examples

11.5 Reference / API

11.5.1 Model & Components

Model(source[, effects, effect_names, ...]) An observer-frame model, composed of a Source and
zero or more effects.

sncosmo.Model

class sncosmo.Model(source, effects=None, effect_names=None, effect_frames=None)
An observer-frame model, composed of a Source and zero or more effects.

Parameters

source [Source or str] The model for the spectral evolution of the source. If a string is given, it
is used to retrieve a Source from the registry.

effects [list of PropagationEffect] List of PropagationEffect instances to add.

effect_names [list of str] Names of effects (same length as effects). The names are used to
label the parameters.

effect_frames [list of str] The frame that each effect is in (same length as effects). Must be
one of {‘rest’, ‘obs’}.

Notes

The Source and PropagationEffects are copied upon instanciation.

Examples

>>> model = sncosmo.Model(source='hsiao')

__init__(source, effects=None, effect_names=None, effect_frames=None)

Methods

__init__(source[, effects, effect_names, ...])

add_effect(effect, name, frame) Add a PropagationEffect to the model.
bandflux(band, time[, zp, zpsys]) Flux through the given bandpass(es) at the given

time(s).
bandfluxcov(band, time[, zp, zpsys]) Like bandflux(), but also returns model covariance on

values.
bandmag(band, magsys, time) Magnitude at the given time(s) through the given

bandpass(es), and for the given magnitude system(s).
continues on next page

44 Chapter 11. Examples

sncosmo Documentation, Release 2.6.0

Table 2 – continued from previous page
bandoverlap(band[, z]) Return True if model dispersion range fully overlaps

the band.
color(band1, band2, magsys, time) band1 - band2 color at the given time(s) through the

given pair of bandpasses, and for the given magnitude
system.

flux(time, wave) The spectral flux density at the given time and wave-
length values.

get(name) Get parameter of the model by name.
maxtime() Maximum observer-frame time at which the model is

defined.
maxwave() Maximum observer-frame wavelength of the model.
mintime() Minimum observer-frame time at which the model is

defined.
minwave() Minimum observer-frame wavelength of the model.
set(**param_dict) Set parameters of the model by name.
set_source_peakabsmag(absmag, band, magsys) Set the amplitude of the source component of the

model according to the desired absolute magnitude
in the specified band.

set_source_peakmag(m, band, magsys[, sam-
pling])

Set the amplitude of the source component of the
model according to a peak apparent magnitude.

source_peakabsmag(band, magsys[, sampling, ...]) Peak absolute magnitude of the source in rest-frame
bandpass.

source_peakmag(band, magsys[, sampling]) Peak apparent magnitude of source in a rest-frame
bandpass.

update(param_dict) Set parameters of the model from a dictionary.

Attributes

effect_names Names of propagation effects (list of str).
effects List of constituent propagation effects.
param_names List of parameter names.
parameters Parameter value array
source The Source instance.

Source component of Model

Source() An abstract base class for transient models.
TimeSeriesSource(phase, wave, flux[, ...]) A single-component spectral time series model.
StretchSource(phase, wave, flux[, name, version]) A single-component spectral time series model, that

"stretches" in time.
MLCS2k2Source(fluxfile[, name, version]) A spectral time series model based on the MLCS2k2

model light curves, using the Hsiao template at each
phase, mangled to match the model photometry.

SALT2Source([modeldir, m0file, m1file, ...]) The SALT2 Type Ia supernova spectral timeseries
model.

SALT3Source([modeldir, m0file, m1file, ...]) The SALT3 Type Ia supernova spectral timeseries
model.

SNEMOSource(fluxfile[, name, version]) The SNEMO Type Ia supernova spectral timeseries
model

continues on next page

11.5. Reference / API 45

sncosmo Documentation, Release 2.6.0

Table 4 – continued from previous page
SUGARSource([modeldir, m0file, alpha1file, ...]) The SUGAR Type Ia supernova spectral time series tem-

plate.

sncosmo.Source

class sncosmo.Source
An abstract base class for transient models.

A “transient model” in this case is the spectral time evolution of a source, as defined in the rest-frame of the
transient: Source subclass instances define a spectral flux density (in, e.g., erg / s / cm^2 / Angstrom) as a
function of phase and wavelength, where phase and wavelength are in the source’s rest-frame. (The Model class
wraps a Source instance and takes care of redshift and time dilation.) This two-dimensional spectral surface
can be a function of any number of parameters that alter its amplitude or shape. Different subclasses will have
different parameters.

This is an abstract base class – You can’t create instances of this class. Instead, you must work with subclasses
such as TimeSeriesSource. Subclasses must define (at minimum):

• __init__()

• _param_names (list of str)

• _parameters (numpy.ndarray)

• _flux(ndarray, ndarray)

• minphase()

• maxphase()

• minwave()

• maxwave()

abstract __init__()

Methods

__init__()

bandflux(band, phase[, zp, zpsys]) Flux through the given bandpass(es) at the given
phase(s).

bandmag(band, magsys, phase) Magnitude at the given phase(s) through the given
bandpass(es), and for the given magnitude system(s).

flux(phase, wave) The spectral flux density at the given phase and wave-
length values.

get(name) Get parameter of the model by name.
maxphase()

maxwave()

minphase()

continues on next page

46 Chapter 11. Examples

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

sncosmo Documentation, Release 2.6.0

Table 5 – continued from previous page
minwave()

peakmag(band, magsys[, sampling]) Peak apparent magnitude in rest-frame bandpass.
peakphase(band_or_wave[, sampling]) Determine phase of maximum flux for the given

band/wavelength.
set(**param_dict) Set parameters of the model by name.
set_peakmag(m, band, magsys[, sampling]) Set peak apparent magnitude in rest-frame bandpass.
update(param_dict) Set parameters of the model from a dictionary.

Attributes

param_names List of parameter names.
parameters Parameter value array

sncosmo.TimeSeriesSource

class sncosmo.TimeSeriesSource(phase, wave, flux, zero_before=False, time_spline_degree=3, name=None,
version=None)

A single-component spectral time series model.

The spectral flux density of this model is given by

𝐹 (𝑡, 𝜆) = 𝐴×𝑀(𝑡, 𝜆)

where _M_ is the flux defined on a grid in phase and wavelength and _A_ (amplitude) is the single free parameter
of the model. The amplitude _A_ is a simple unitless scaling factor applied to whatever flux values are used
to initialize the TimeSeriesSource. Therefore, the _A_ parameter has no intrinsic meaning. It can only be
interpreted in conjunction with the model values. Thus, it is meaningless to compare the _A_ parameter between
two different TimeSeriesSource instances with different model data.

Parameters

phase [ndarray] Phases in days.

wave [ndarray] Wavelengths in Angstroms.

flux [ndarray] Model spectral flux density in erg / s / cm^2 / Angstrom. Must have shape
(num_phases, num_wave).

zero_before [bool, optional] If True, flux at phases before minimum phase will be zeroed. The
default is False, in which case the flux at such phases will be equal to the flux at the minimum
phase (flux[0, :] in the input array).

time_spline_degree [int, optional] Degree of the spline used for interpolation in the time (phase)
direction. By default this is set to 3 (i.e. cubic spline). For models that are defined with sparse
time grids this can lead to large interpolation uncertainties and negative fluxes. If this is a
problem, set time_spline_degree to 1 to use linear interpolation instead.

name [str, optional] Name of the model. Default is None.

version [str, optional] Version of the model. Default is None.

__init__(phase, wave, flux, zero_before=False, time_spline_degree=3, name=None, version=None)

11.5. Reference / API 47

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

sncosmo Documentation, Release 2.6.0

Methods

__init__(phase, wave, flux[, zero_before, ...])

bandflux(band, phase[, zp, zpsys]) Flux through the given bandpass(es) at the given
phase(s).

bandmag(band, magsys, phase) Magnitude at the given phase(s) through the given
bandpass(es), and for the given magnitude system(s).

flux(phase, wave) The spectral flux density at the given phase and wave-
length values.

get(name) Get parameter of the model by name.
maxphase()

maxwave()

minphase()

minwave()

peakmag(band, magsys[, sampling]) Peak apparent magnitude in rest-frame bandpass.
peakphase(band_or_wave[, sampling]) Determine phase of maximum flux for the given

band/wavelength.
set(**param_dict) Set parameters of the model by name.
set_peakmag(m, band, magsys[, sampling]) Set peak apparent magnitude in rest-frame bandpass.
update(param_dict) Set parameters of the model from a dictionary.

Attributes

param_names List of parameter names.
param_names_latex

parameters Parameter value array

sncosmo.StretchSource

class sncosmo.StretchSource(phase, wave, flux, name=None, version=None)
A single-component spectral time series model, that “stretches” in time.

The spectral flux density of this model is given by

𝐹 (𝑡, 𝜆) = 𝐴×𝑀(𝑡/𝑠, 𝜆)

where _A_ is the amplitude and _s_ is the “stretch”.

Parameters

phase [ndarray] Phases in days.

wave [ndarray] Wavelengths in Angstroms.

flux [ndarray] Model spectral flux density in erg / s / cm^2 / Angstrom. Must have shape
(num_phases, num_disp).

48 Chapter 11. Examples

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

sncosmo Documentation, Release 2.6.0

__init__(phase, wave, flux, name=None, version=None)

Methods

__init__(phase, wave, flux[, name, version])

bandflux(band, phase[, zp, zpsys]) Flux through the given bandpass(es) at the given
phase(s).

bandmag(band, magsys, phase) Magnitude at the given phase(s) through the given
bandpass(es), and for the given magnitude system(s).

flux(phase, wave) The spectral flux density at the given phase and wave-
length values.

get(name) Get parameter of the model by name.
maxphase()

maxwave()

minphase()

minwave()

peakmag(band, magsys[, sampling]) Peak apparent magnitude in rest-frame bandpass.
peakphase(band_or_wave[, sampling]) Determine phase of maximum flux for the given

band/wavelength.
set(**param_dict) Set parameters of the model by name.
set_peakmag(m, band, magsys[, sampling]) Set peak apparent magnitude in rest-frame bandpass.
update(param_dict) Set parameters of the model from a dictionary.

Attributes

param_names List of parameter names.
param_names_latex

parameters Parameter value array

sncosmo.MLCS2k2Source

class sncosmo.MLCS2k2Source(fluxfile, name=None, version=None)
A spectral time series model based on the MLCS2k2 model light curves, using the Hsiao template at each phase,
mangled to match the model photometry.

The spectral flux density of this model is given by

𝐹 (𝑡, 𝜆) = 𝐴×𝑀(∆, 𝑡, 𝜆)

where _A_ is the amplitude and _Delta_ is the MLCS2k2 light curve shape parameter.

Note: Requires scipy version 0.14 or higher.

11.5. Reference / API 49

sncosmo Documentation, Release 2.6.0

Parameters

fluxfile [str or obj] Filename (or open file-like object) of a FITS file containing 3-d array of
spectral flux density values for a grid of delta, phase and wavelength values.

__init__(fluxfile, name=None, version=None)

Methods

__init__(fluxfile[, name, version])

bandflux(band, phase[, zp, zpsys]) Flux through the given bandpass(es) at the given
phase(s).

bandmag(band, magsys, phase) Magnitude at the given phase(s) through the given
bandpass(es), and for the given magnitude system(s).

flux(phase, wave) The spectral flux density at the given phase and wave-
length values.

get(name) Get parameter of the model by name.
maxphase()

maxwave()

minphase()

minwave()

peakmag(band, magsys[, sampling]) Peak apparent magnitude in rest-frame bandpass.
peakphase(band_or_wave[, sampling]) Determine phase of maximum flux for the given

band/wavelength.
set(**param_dict) Set parameters of the model by name.
set_peakmag(m, band, magsys[, sampling]) Set peak apparent magnitude in rest-frame bandpass.
update(param_dict) Set parameters of the model from a dictionary.

Attributes

param_names List of parameter names.
param_names_latex

parameters Parameter value array

50 Chapter 11. Examples

sncosmo Documentation, Release 2.6.0

sncosmo.SALT2Source

class sncosmo.SALT2Source(modeldir=None, m0file='salt2_template_0.dat', m1file='salt2_template_1.dat',
clfile='salt2_color_correction.dat', cdfile='salt2_color_dispersion.dat',
errscalefile='salt2_lc_dispersion_scaling.dat',
lcrv00file='salt2_lc_relative_variance_0.dat',
lcrv11file='salt2_lc_relative_variance_1.dat',
lcrv01file='salt2_lc_relative_covariance_01.dat', name=None, version=None)

The SALT2 Type Ia supernova spectral timeseries model.

The spectral flux density of this model is given by

𝐹 (𝑡, 𝜆) = 𝑥0(𝑀0(𝑡, 𝜆) + 𝑥1𝑀1(𝑡, 𝜆)) × 10−0.4𝐶𝐿(𝜆)𝑐

where x0, x1 and c are the free parameters of the model, M_0, M_1 are the zeroth and first components of the
model, and CL is the colorlaw, which gives the extinction in magnitudes for c=1.

Parameters

modeldir [str, optional] Directory path containing model component files. Default is None,
which means that no directory is prepended to filenames when determining their path.

m0file, m1file, clfile [str or fileobj, optional] Filenames of various model components. Defaults
are:

• m0file = ‘salt2_template_0.dat’ (2-d grid)

• m1file = ‘salt2_template_1.dat’ (2-d grid)

• clfile = ‘salt2_color_correction.dat’

errscalefile, lcrv00file, lcrv11file, lcrv01file, cdfile [str or fileobj] (optional) Filenames of var-
ious model components for model covariance in synthetic photometry. See bandflux_rcov
for details. Defaults are:

• errscalefile = ‘salt2_lc_dispersion_scaling.dat’ (2-d grid)

• lcrv00file = ‘salt2_lc_relative_variance_0.dat’ (2-d grid)

• lcrv11file = ‘salt2_lc_relative_variance_1.dat’ (2-d grid)

• lcrv01file = ‘salt2_lc_relative_covariance_01.dat’ (2-d grid)

• cdfile = ‘salt2_color_dispersion.dat’ (1-d grid)

Notes

The “2-d grid” files have the format <phase> <wavelength> <value> on each line.

The phase and wavelength values of the various components don’t necessarily need to match. (In the most recent
salt2 model data, they do not all match.) The phase and wavelength values of the first model component (in
m0file) are taken as the “native” sampling of the model, even though these values might require interpolation
of the other model components.

__init__(modeldir=None, m0file='salt2_template_0.dat', m1file='salt2_template_1.dat',
clfile='salt2_color_correction.dat', cdfile='salt2_color_dispersion.dat',
errscalefile='salt2_lc_dispersion_scaling.dat', lcrv00file='salt2_lc_relative_variance_0.dat',
lcrv11file='salt2_lc_relative_variance_1.dat', lcrv01file='salt2_lc_relative_covariance_01.dat',
name=None, version=None)

11.5. Reference / API 51

https://docs.python.org/3/library/constants.html#None

sncosmo Documentation, Release 2.6.0

Methods

__init__([modeldir, m0file, m1file, clfile, ...])

bandflux(band, phase[, zp, zpsys]) Flux through the given bandpass(es) at the given
phase(s).

bandflux_rcov(band, phase) Return the relative model covariance (or "model er-
ror") on synthetic photometry generated from the
model in the given restframe band(s).

bandmag(band, magsys, phase) Magnitude at the given phase(s) through the given
bandpass(es), and for the given magnitude system(s).

colorlaw([wave]) Return the value of the CL function for the given
wavelengths.

flux(phase, wave) The spectral flux density at the given phase and wave-
length values.

get(name) Get parameter of the model by name.
maxphase()

maxwave()

minphase()

minwave()

peakmag(band, magsys[, sampling]) Peak apparent magnitude in rest-frame bandpass.
peakphase(band_or_wave[, sampling]) Determine phase of maximum flux for the given

band/wavelength.
set(**param_dict) Set parameters of the model by name.
set_peakmag(m, band, magsys[, sampling]) Set peak apparent magnitude in rest-frame bandpass.
update(param_dict) Set parameters of the model from a dictionary.

Attributes

param_names List of parameter names.
param_names_latex

parameters Parameter value array

sncosmo.SALT3Source

class sncosmo.SALT3Source(modeldir=None, m0file='salt3_template_0.dat', m1file='salt3_template_1.dat',
clfile='salt3_color_correction.dat', cdfile='salt3_color_dispersion.dat',
lcrv00file='salt3_lc_variance_0.dat', lcrv11file='salt3_lc_variance_1.dat',
lcrv01file='salt3_lc_covariance_01.dat', name=None, version=None)

The SALT3 Type Ia supernova spectral timeseries model. Kenworthy et al., 2021, ApJ, submitted. Model defi-
nitions are the same as SALT2 except for the errors, which are now given in flux space. Unlike SALT2, no file is
used for scaling the errors.

52 Chapter 11. Examples

sncosmo Documentation, Release 2.6.0

The spectral flux density of this model is given by

𝐹 (𝑡, 𝜆) = 𝑥0(𝑀0(𝑡, 𝜆) + 𝑥1𝑀1(𝑡, 𝜆)) × 10−0.4𝐶𝐿(𝜆)𝑐

where x0, x1 and c are the free parameters of the model, M_0, M_1 are the zeroth and first components of the
model, and CL is the colorlaw, which gives the extinction in magnitudes for c=1.

Parameters

modeldir [str, optional] Directory path containing model component files. Default is None,
which means that no directory is prepended to filenames when determining their path.

m0file, m1file, clfile [str or fileobj, optional] Filenames of various model components. Defaults
are:

• m0file = ‘salt2_template_0.dat’ (2-d grid)

• m1file = ‘salt2_template_1.dat’ (2-d grid)

• clfile = ‘salt2_color_correction.dat’

lcrv00file, lcrv11file, lcrv01file, cdfile [str or fileobj] (optional) Filenames of various model
components for model covariance in synthetic photometry. See bandflux_rcov for details.
Defaults are:

• lcrv00file = ‘salt2_lc_relative_variance_0.dat’ (2-d grid)

• lcrv11file = ‘salt2_lc_relative_variance_1.dat’ (2-d grid)

• lcrv01file = ‘salt2_lc_relative_covariance_01.dat’ (2-d grid)

• cdfile = ‘salt2_color_dispersion.dat’ (1-d grid)

Notes

The “2-d grid” files have the format <phase> <wavelength> <value> on each line.

The phase and wavelength values of the various components don’t necessarily need to match. (In the most recent
salt2 model data, they do not all match.) The phase and wavelength values of the first model component (in
m0file) are taken as the “native” sampling of the model, even though these values might require interpolation
of the other model components.

__init__(modeldir=None, m0file='salt3_template_0.dat', m1file='salt3_template_1.dat',
clfile='salt3_color_correction.dat', cdfile='salt3_color_dispersion.dat',
lcrv00file='salt3_lc_variance_0.dat', lcrv11file='salt3_lc_variance_1.dat',
lcrv01file='salt3_lc_covariance_01.dat', name=None, version=None)

Methods

__init__([modeldir, m0file, m1file, clfile, ...])

bandflux(band, phase[, zp, zpsys]) Flux through the given bandpass(es) at the given
phase(s).

bandflux_rcov(band, phase) Return the relative model covariance (or "model er-
ror") on synthetic photometry generated from the
model in the given restframe band(s).

continues on next page

11.5. Reference / API 53

https://docs.python.org/3/library/constants.html#None

sncosmo Documentation, Release 2.6.0

Table 15 – continued from previous page
bandmag(band, magsys, phase) Magnitude at the given phase(s) through the given

bandpass(es), and for the given magnitude system(s).
colorlaw([wave]) Return the value of the CL function for the given

wavelengths.
flux(phase, wave) The spectral flux density at the given phase and wave-

length values.
get(name) Get parameter of the model by name.
maxphase()

maxwave()

minphase()

minwave()

peakmag(band, magsys[, sampling]) Peak apparent magnitude in rest-frame bandpass.
peakphase(band_or_wave[, sampling]) Determine phase of maximum flux for the given

band/wavelength.
set(**param_dict) Set parameters of the model by name.
set_peakmag(m, band, magsys[, sampling]) Set peak apparent magnitude in rest-frame bandpass.
update(param_dict) Set parameters of the model from a dictionary.

Attributes

param_names List of parameter names.
param_names_latex

parameters Parameter value array

sncosmo.SNEMOSource

class sncosmo.SNEMOSource(fluxfile, name=None, version=None)
The SNEMO Type Ia supernova spectral timeseries model

The spectral flux density of this model is given by

𝐹 (𝑡, 𝜆) = 𝑐0(𝑒0(𝑡, 𝜆) +

𝑛∑︁
𝑖=1

𝑐𝑖𝑒𝑖(𝑡, 𝜆)) × 𝐹𝑀07(𝜆,𝐴𝑠)

where c_0, c_i, and A_s are the free parameters of the model.

Parameters

fluxfile [str or obj, optional] Filename of an ascii file containing 2-d array of spectral flux density
values for a grid of phase and wavelength values. Assuming columns phase, wavelength,
e_0, e_1, e_2. . .

__init__(fluxfile, name=None, version=None)

54 Chapter 11. Examples

sncosmo Documentation, Release 2.6.0

Methods

__init__(fluxfile[, name, version])

bandflux(band, phase[, zp, zpsys]) Flux through the given bandpass(es) at the given
phase(s).

bandmag(band, magsys, phase) Magnitude at the given phase(s) through the given
bandpass(es), and for the given magnitude system(s).

flux(phase, wave) The spectral flux density at the given phase and wave-
length values.

get(name) Get parameter of the model by name.
maxphase()

maxwave()

minphase()

minwave()

peakmag(band, magsys[, sampling]) Peak apparent magnitude in rest-frame bandpass.
peakphase(band_or_wave[, sampling]) Determine phase of maximum flux for the given

band/wavelength.
set(**param_dict) Set parameters of the model by name.
set_peakmag(m, band, magsys[, sampling]) Set peak apparent magnitude in rest-frame bandpass.
update(param_dict) Set parameters of the model from a dictionary.

Attributes

param_names List of parameter names.
parameters Parameter value array

sncosmo.SUGARSource

class sncosmo.SUGARSource(modeldir=None, m0file='sugar_template_0.dat',
alpha1file='sugar_template_1.dat', alpha2file='sugar_template_2.dat',
alpha3file='sugar_template_3.dat', CCMfile='sugar_template_4.dat', name=None,
version=None)

The SUGAR Type Ia supernova spectral time series template.

The spectral energy distribution of this model is given by

𝐹 (𝑡, 𝜆) = 𝑞010−0.4(𝑀0(𝑡,𝜆)+𝑞1𝛼1(𝑡,𝜆)+𝑞2𝛼2(𝑡,𝜆)+𝑞3𝛼3(𝑡,𝜆)+𝐴𝑣𝐶𝐶𝑀(𝜆))(10−3𝑐𝜆2)

where q_0, q_1, q_2, q_3, and A_v are the free parameters of the model,``alpha_0``, alpha_1, alpha_2`,
alpha_3`, CCM` are the template vectors of the model. The q_0 is the equivalent parameter in flux of the Delta
M_{gray} parameter define in Leget et al. 2020.

Parameters

modeldir [str, optional] Directory path containing model component files. Default is None,
which means that no directory is prepended to filenames when determining their path.

11.5. Reference / API 55

https://docs.python.org/3/library/constants.html#None

sncosmo Documentation, Release 2.6.0

m0file [str or fileobj, optional]

alpha1file [str or fileobj, optional]

alpha2file [str or fileobj, optional]

alpha3file [str or fileobj, optional]

CCMfile: str or fileobj, optional Filenames of various model components. Defaults are: *
m0file = ‘sugar_template_0.dat’ (2-d grid) * alpha1file = ‘sugar_template_1.dat’ (2-d grid)
* alpha2file = ‘sugar_template_2.dat’ (2-d grid) * alpha3file = ‘sugar_template_3.dat’ (2-d
grid) * CCMfile = ‘sugar_template_4.dat’ (2-d grid)

Notes

The “2-d grid” files have the format <phase> <wavelength> <value> on each line.

__init__(modeldir=None, m0file='sugar_template_0.dat', alpha1file='sugar_template_1.dat',
alpha2file='sugar_template_2.dat', alpha3file='sugar_template_3.dat',
CCMfile='sugar_template_4.dat', name=None, version=None)

Methods

__init__([modeldir, m0file, alpha1file, ...])

bandflux(band, phase[, zp, zpsys]) Flux through the given bandpass(es) at the given
phase(s).

bandmag(band, magsys, phase) Magnitude at the given phase(s) through the given
bandpass(es), and for the given magnitude system(s).

flux(phase, wave) The spectral flux density at the given phase and wave-
length values.

get(name) Get parameter of the model by name.
maxphase()

maxwave()

minphase()

minwave()

peakmag(band, magsys[, sampling]) Peak apparent magnitude in rest-frame bandpass.
peakphase(band_or_wave[, sampling]) Determine phase of maximum flux for the given

band/wavelength.
set(**param_dict) Set parameters of the model by name.
set_peakmag(m, band, magsys[, sampling]) Set peak apparent magnitude in rest-frame bandpass.
update(param_dict) Set parameters of the model from a dictionary.

56 Chapter 11. Examples

sncosmo Documentation, Release 2.6.0

Attributes

param_names List of parameter names.
param_names_latex

parameters Parameter value array

Effect components of Model: interstellar dust extinction

PropagationEffect() Abstract base class for propagation effects.
CCM89Dust() Cardelli, Clayton, Mathis (1989) extinction model dust.
OD94Dust() O'Donnell (1994) extinction model dust.
F99Dust([r_v]) Fitzpatrick (1999) extinction model dust with fixed R_V.

sncosmo.PropagationEffect

class sncosmo.PropagationEffect
Abstract base class for propagation effects.

Derived classes must define _minwave (float), _maxwave (float).

__init__(*args, **kwargs)

Methods

__init__(*args, **kwargs)

get(name) Get parameter of the model by name.
maxwave()

minwave()

propagate(wave, flux)

set(**param_dict) Set parameters of the model by name.
update(param_dict) Set parameters of the model from a dictionary.

Attributes

param_names List of parameter names.
parameters Parameter value array

11.5. Reference / API 57

sncosmo Documentation, Release 2.6.0

sncosmo.CCM89Dust

class sncosmo.CCM89Dust
Cardelli, Clayton, Mathis (1989) extinction model dust.

__init__()

Methods

__init__()

get(name) Get parameter of the model by name.
maxwave()

minwave()

propagate(wave, flux) Propagate the flux.
set(**param_dict) Set parameters of the model by name.
update(param_dict) Set parameters of the model from a dictionary.

Attributes

param_names List of parameter names.
param_names_latex

parameters Parameter value array

sncosmo.OD94Dust

class sncosmo.OD94Dust
O’Donnell (1994) extinction model dust.

__init__()

Methods

__init__()

get(name) Get parameter of the model by name.
maxwave()

minwave()

propagate(wave, flux) Propagate the flux.
set(**param_dict) Set parameters of the model by name.
update(param_dict) Set parameters of the model from a dictionary.

58 Chapter 11. Examples

sncosmo Documentation, Release 2.6.0

Attributes

param_names List of parameter names.
param_names_latex

parameters Parameter value array

sncosmo.F99Dust

class sncosmo.F99Dust(r_v=3.1)
Fitzpatrick (1999) extinction model dust with fixed R_V.

__init__(r_v=3.1)

Methods

__init__([r_v])

get(name) Get parameter of the model by name.
maxwave()

minwave()

propagate(wave, flux) Propagate the flux.
set(**param_dict) Set parameters of the model by name.
update(param_dict) Set parameters of the model from a dictionary.

Attributes

param_names List of parameter names.
parameters Parameter value array

11.5.2 Bandpass & Magnitude Systems

Bandpass(wave, trans[, wave_unit, ...]) Transmission as a function of spectral wavelength.
AggregateBandpass(transmissions[, ...]) Bandpass defined by multiple transmissions in series.
BandpassInterpolator(transmissions, ...[, ...]) Bandpass generator defined as a function of focal plane

position.
MagSystem([name]) An abstract base class for magnitude systems.
ABMagSystem([name]) Magnitude system where a source with F_nu = 3631 Jan-

sky at all frequencies has magnitude 0 in all bands.
SpectralMagSystem(refspectrum[, name]) A magnitude system defined by a fundamental spec-

trophotometric standard.
CompositeMagSystem([bands, families, name]) A magnitude system defined in a specific set of bands.

11.5. Reference / API 59

sncosmo Documentation, Release 2.6.0

sncosmo.Bandpass

class sncosmo.Bandpass(wave, trans, wave_unit=Unit('Angstrom'), trans_unit=Unit(dimensionless),
normalize=False, name=None, trim_level=None)

Transmission as a function of spectral wavelength.

Parameters

wave [list_like] Wavelength. Monotonically increasing values.

trans [list_like] Transmission fraction.

wave_unit [Unit or str, optional] Wavelength unit. Default is Angstroms.

trans_unit [Unit, optional] Transmission unit. Can be dimensionless_unscaled, indicating
a ratio of transmitted to incident photons, or units proportional to inverse energy, indicating
a ratio of transmitted photons to incident energy. Default is ratio of transmitted to incident
photons.

normalize [bool, optional] If True, normalize fractional transmission to be 1.0 at peak. It is
recommended to set normalize=True if transmission is in units of inverse energy. (When
transmission is given in these units, the absolute value is usually not significant; normalizing
gives more reasonable transmission values.) Default is False.

trim_level [float, optional] If given, crop bandpass to region where transmission is above this
fraction of the maximum transmission. For example, if maximum transmission is 0.5,
trim_level=0.001 will remove regions where transmission is below 0.0005. Only con-
tiguous regions on the sides of the bandpass are removed.

name [str, optional] Identifier. Default is None.

Examples

Construct a Bandpass and access the input arrays:

>>> b = Bandpass([4000., 4200., 4400.], [0.5, 1.0, 0.5])
>>> b.wave
array([4000., 4200., 4400.])
>>> b.trans
array([0.5, 1. , 0.5])

Bandpasses act like continuous 1-d functions (linear interpolation is used):

>>> b([4100., 4300.])
array([0.75, 0.75])

The effective (transmission-weighted) wavelength is a property:

>>> b.wave_eff
4200.0

The trim_level keyword can be used to remove “out-of-band” transmission upon construction. The following
example removes regions of the bandpass with tranmission less than 1 percent of peak:

>>> band = Bandpass([4000., 4100., 4200., 4300., 4400., 4500.],
... [0.001, 0.002, 0.5, 0.6, 0.003, 0.001],
... trim_level=0.01)

60 Chapter 11. Examples

https://docs.astropy.org/en/stable/api/astropy.units.Unit.html#astropy.units.Unit
https://docs.astropy.org/en/stable/api/astropy.units.Unit.html#astropy.units.Unit
https://docs.python.org/3/library/constants.html#None

sncosmo Documentation, Release 2.6.0

>>> band.wave
array([4100., 4200., 4300., 4400.])

>>> band.trans
array([0.002, 0.5 , 0.6 , 0.003])

While less strictly correct than including the “out-of-band” transmission, only considering the region of the
bandpass where transmission is significant can improve model-bandpass overlap as well as performance.

__init__(wave, trans, wave_unit=Unit('Angstrom'), trans_unit=Unit(dimensionless), normalize=False,
name=None, trim_level=None)

Methods

__init__(wave, trans[, wave_unit, ...])

maxwave()

minwave()

shifted(factor[, name]) Return a new Bandpass instance with all wavelengths
multiplied by a factor.

Attributes

wave_eff Effective wavelength of bandpass in Angstroms.

sncosmo.AggregateBandpass

class sncosmo.AggregateBandpass(transmissions, prefactor=1.0, name=None, family=None)
Bandpass defined by multiple transmissions in series.

Parameters

transmissions [list of (wave, trans) pairs.] Functions defining component transmissions.

prefactor [float, optional] Scalar factor to multiply transmissions by. Default is 1.0.

name [str, optional] Name of bandpass.

family [str, optional] Name of “family” this bandpass belongs to. Such an identifier can be useful
for identifying bandpasses belonging to the same instrument/filter combination but different
focal plane positions.

__init__(transmissions, prefactor=1.0, name=None, family=None)

11.5. Reference / API 61

sncosmo Documentation, Release 2.6.0

Methods

__init__(transmissions[, prefactor, name, ...])

maxwave()

minwave()

shifted(factor[, name, family]) Return a new AggregateBandpass instance with all
wavelengths multiplied by a factor.

Attributes

wave_eff Effective wavelength of bandpass in Angstroms.

sncosmo.BandpassInterpolator

class sncosmo.BandpassInterpolator(transmissions, dependent_transmissions, prefactor=1.0, name=None)
Bandpass generator defined as a function of focal plane position.

Instances of this class are not Bandpasses themselves, but generate Bandpasses at a given focal plane position.
This class stores the transmission as a function of focal plane position and interpolates between the defined
positions to return the bandpass at an arbitrary position.

Parameters

transmissions [list of (wave, trans) pairs] Transmissions that apply everywhere in the focal
plane.

dependent_transmissions [list of (value, wave, trans)] Transmissions that depend on some pa-
rameter. Each value is the scalar parameter value, wave and trans are 1-d arrays.

prefactor [float, optional] Scalar multiplying factor.

name [str]

Examples

Transmission uniform across focal plane:

>>> uniform_trans = ([4000., 5000.], [1., 0.5]) # wave, trans

Transmissions as a function of radius:

>>> trans0 = (0., [4000., 5000.], [0.5, 0.5]) # radius=0
>>> trans1 = (1., [4000., 5000.], [0.75, 0.75]) # radius=1
>>> trans2 = (2., [4000., 5000.], [0.1, 0.1]) # radius=2

>>> band_interp = BandpassInterpolator([uniform_trans],
... [trans0, trans1, trans2],
... name='my_band')

Min and max radius:

62 Chapter 11. Examples

https://docs.python.org/3/library/wave.html#module-wave

sncosmo Documentation, Release 2.6.0

>>> band_interp.minpos(), band_interp.maxpos()
(0.0, 2.0)

Get bandpass at a given radius:

>>> band = band_interp.at(1.5)

>>> band
<AggregateBandpass 'my_band at 1.500000' at 0x7f7a2e425668>

The band is aggregate of uniform transmission part, and interpolated radial-dependent part.

>>> band([4500., 4600.])
array([0.65625, 0.6125])

__init__(transmissions, dependent_transmissions, prefactor=1.0, name=None)

Methods

__init__(transmissions, dependent_transmissions)

at(pos) Return the bandpass at the given position
maxpos() Maximum positional parameter value.
minpos() Minimum positional parameter value.

sncosmo.MagSystem

class sncosmo.MagSystem(name=None)
An abstract base class for magnitude systems.

__init__(name=None)

Methods

__init__([name])

band_flux_to_mag(flux, band) Convert flux (photons / s / cm^2) to magnitude.
band_mag_to_flux(mag, band) Convert magnitude to flux in photons / s / cm^2
zpbandflux(band) Flux of an object with magnitude zero in the given

bandpass.

11.5. Reference / API 63

sncosmo Documentation, Release 2.6.0

Attributes

name Name of magnitude system.

sncosmo.ABMagSystem

class sncosmo.ABMagSystem(name=None)
Magnitude system where a source with F_nu = 3631 Jansky at all frequencies has magnitude 0 in all bands.

__init__(name=None)

Methods

__init__([name])

band_flux_to_mag(flux, band) Convert flux (photons / s / cm^2) to magnitude.
band_mag_to_flux(mag, band) Convert magnitude to flux in photons / s / cm^2
zpbandflux(band) Flux of an object with magnitude zero in the given

bandpass.

Attributes

name Name of magnitude system.

sncosmo.SpectralMagSystem

class sncosmo.SpectralMagSystem(refspectrum, name=None)
A magnitude system defined by a fundamental spectrophotometric standard.

Parameters

refspectrum [sncosmo.SpectrumModel] The spectrum of the fundamental spectrophotomet-
ric standard.

__init__(refspectrum, name=None)

Methods

__init__(refspectrum[, name])

band_flux_to_mag(flux, band) Convert flux (photons / s / cm^2) to magnitude.
band_mag_to_flux(mag, band) Convert magnitude to flux in photons / s / cm^2
zpbandflux(band) Flux of an object with magnitude zero in the given

bandpass.

64 Chapter 11. Examples

sncosmo Documentation, Release 2.6.0

Attributes

name Name of magnitude system.

sncosmo.CompositeMagSystem

class sncosmo.CompositeMagSystem(bands=None, families=None, name=None)
A magnitude system defined in a specific set of bands.

In each band, there is a fundamental standard with a known (generally non-zero) magnitude.

Parameters

bands: dict, optional Dictionary where keys are Bandpass instances or names, thereof and val-
ues are 2-tuples of magnitude system and offset. The offset gives the magnitude of standard
in the given band. A positive offset means that the composite magsystem zeropoint flux is
higher (brighter) than that of the standard.

families [dict, optional] Similar to the bands argument, but keys are strings that apply to any
bandpass that has a matching family attribute. This is useful for generated bandpasses
where the transmission differs across focal plane (and hence the bandpass at each position is
unique), but all photometry has been calibrated to the same offset.

name [str] The name attribute of the magnitude system.

Examples

Create a magnitude system defined in only two SDSS bands where an object with AB magnitude of 0 would have
a magnitude of 0.01 and 0.02 in the two bands respectively:

>>> sncosmo.CompositeMagSystem(bands={'sdssg': ('ab', 0.01),
... 'sdssr': ('ab', 0.02)})

__init__(bands=None, families=None, name=None)

Methods

__init__([bands, families, name])

band_flux_to_mag(flux, band) Convert flux (photons / s / cm^2) to magnitude.
band_mag_to_flux(mag, band) Convert magnitude to flux in photons / s / cm^2
zpbandflux(band) Flux of an object with magnitude zero in the given

bandpass.

11.5. Reference / API 65

sncosmo Documentation, Release 2.6.0

Attributes

bands

name Name of magnitude system.

11.5.3 I/O

Functions for reading and writing photometric data, gridded data, extinction maps, and more.

read_lc(file_or_dir[, format]) Read light curve data for a single supernova.
write_lc(data, fname[, format]) Write light curve data.
read_bandpass(fname[, fmt, wave_unit, ...]) Read bandpass from two-column ASCII file containing

wavelength and transmission in each line.
load_example_data() Load an example photometric data table.
load_example_spectrum_data() Load example spectrum data.
read_snana_ascii(fname[, default_tablename]) Read an SNANA-format ascii file.
read_snana_fits(head_file, phot_file[, snids, n]) Read the SNANA FITS format: two FITS files jointly

representing metadata and photometry for a set of SNe.
read_snana_simlib(fname) Read an SNANA 'simlib' (simulation library) ascii file.
read_griddata_ascii(name_or_obj) Read 2-d grid data from a text file.
read_griddata_fits(name_or_obj[, ext]) Read a multi-dimensional grid of data from a FITS file,

where the grid coordinates are encoded in the FITS-
WCS header keywords.

write_griddata_ascii(x0, x1, y, name_or_obj) Write 2-d grid data to a text file.
write_griddata_fits(x0, x1, y, name_or_obj) Write a 2-d grid of data to a FITS file

sncosmo.read_lc

sncosmo.read_lc(file_or_dir, format='ascii', **kwargs)
Read light curve data for a single supernova.

Parameters

file_or_dir [str] Filename (formats ‘ascii’, ‘json’, ‘salt2’) or directory name (format ‘salt2-old’).
For ‘salt2-old’ format, directory must contain a file named ‘lightfile’. All other files in the
directory are assumed to be photometry files, unless the filenames keyword argument is
set.

format [{‘ascii’, ‘json’, ‘salt2’, ‘salt2-old’}, optional] Format of file. Default is ‘ascii’. ‘salt2’
is the new format available in snfit version >= 2.3.0.

read_covmat [bool, optional] [salt2 only] If True, and if a COVMAT keyword is present in header,
read the covariance matrix from the filename specified by COVMAT (assumed to be in the same
directory as the lightcurve file) and include it as a column named Fluxcov in the returned
table. Default is False.

New in version 1.5.0

expand_bands [bool, optional] [salt2 only] If True, convert band names into equivalent Band-
pass objects. This is particularly useful for position-dependent bandpasses in the salt2 file
format: the position information is read from the header and used when creating the bandpass
objects.

66 Chapter 11. Examples

sncosmo Documentation, Release 2.6.0

New in version 1.5.0

delim [str, optional] [ascii only] Used to split entries on a line. Default is None. Extra whites-
pace is ignored.

metachar [str, optional] [ascii only] Lines whose first non-whitespace character is metachar
are treated as metadata lines, where the key and value are split on the first whitespace. Default
is '@'

commentchar [str, optional] [ascii only] One-character string indicating a comment. Default is
‘#’.

filenames [list, optional] [salt2-old only] Only try to read the given filenames as photometry
files. Default is to try to read all files in directory.

Returns

t [astropy Table] Table of data. Metadata (as an OrderedDict) can be accessed via the t.meta
attribute. For example: t.meta['key']. The key is case-sensitive.

Examples

Read an ascii format file that includes metadata (StringIO behaves like a file object):

>>> from io import StringIO
>>> f = StringIO('''
... @id 1
... @RA 36.0
... @description good
... time band flux fluxerr zp zpsys
... 50000. g 1. 0.1 25. ab
... 50000.1 r 2. 0.1 25. ab
... ''')
>>> t = read_lc(f, format='ascii')
>>> print(t)
time band flux fluxerr zp zpsys

------- ---- ---- ------- ---- -----
50000.0 g 1.0 0.1 25.0 ab
50000.1 r 2.0 0.1 25.0 ab
>>> t.meta
OrderedDict([('id', 1), ('RA', 36.0), ('description', 'good')])

sncosmo.write_lc

sncosmo.write_lc(data, fname, format='ascii', **kwargs)
Write light curve data.

Parameters

data [Table] Light curve data.

fname [str] Filename.

format [{‘ascii’, ‘salt2’, ‘snana’, ‘json’}, optional] Format of file. Default is ‘ascii’. ‘salt2’ is
the new format available in snfit version >= 2.3.0.

delim [str, optional] [ascii only] Character used to separate entries on a line. Default is ‘ ‘.

11.5. Reference / API 67

https://docs.python.org/3/library/constants.html#None
https://docs.astropy.org/en/stable/api/astropy.table.Table.html#astropy.table.Table
https://docs.astropy.org/en/stable/api/astropy.table.Table.html#astropy.table.Table

sncosmo Documentation, Release 2.6.0

metachar [str, optional] [ascii only] Metadata designator. Default is ‘@’.

raw [bool, optional] [salt2, snana] By default, the SALT2 and SNANA writers rename some
metadata keys and column names in order to comply with what snfit and SNANA expect.
Set to True to override this. Default is False.

pedantic [bool, optional] [salt2, snana] If True, check that output column names and header
keys comply with expected formatting, and raise a ValueError if not. It is probably a good
idea to set to False when raw is True. Default is True.

sncosmo.read_bandpass

sncosmo.read_bandpass(fname, fmt='ascii', wave_unit=Unit('Angstrom'), trans_unit=Unit(dimensionless),
normalize=False, trim_level=None, name=None)

Read bandpass from two-column ASCII file containing wavelength and transmission in each line.

Parameters

fname [str] File name.

fmt [{‘ascii’}] File format of file. Currently only ASCII file supported.

wave_unit [Unit or str, optional] Wavelength unit. Default is Angstroms.

trans_unit [Unit, optional] Transmission unit. Can be dimensionless_unscaled, indicating
a ratio of transmitted to incident photons, or units proportional to inverse energy, indicating
a ratio of transmitted photons to incident energy. Default is ratio of transmitted to incident
photons.

normalize [bool, optional] If True, normalize fractional transmission to be 1.0 at peak. It is
recommended to set to True if transmission is in units of inverse energy. (When transmission
is given in these units, the absolute value is usually not significant; normalizing gives more
reasonable transmission values.) Default is False.

name [str, optional] Identifier. Default is None.

Returns

band [Bandpass]

sncosmo.load_example_data

sncosmo.load_example_data()
Load an example photometric data table.

Returns

data [Table]

68 Chapter 11. Examples

https://docs.astropy.org/en/stable/api/astropy.units.Unit.html#astropy.units.Unit
https://docs.astropy.org/en/stable/api/astropy.units.Unit.html#astropy.units.Unit
https://docs.python.org/3/library/constants.html#None
https://docs.astropy.org/en/stable/api/astropy.table.Table.html#astropy.table.Table

sncosmo Documentation, Release 2.6.0

sncosmo.load_example_spectrum_data

sncosmo.load_example_spectrum_data()
Load example spectrum data.

Returns

wave [array] Wavelengths of each spectral bin

flux [array] Flux in each spectral bin

fluxerr [array] Flux error in each spectral bin

sncosmo.read_snana_ascii

sncosmo.read_snana_ascii(fname, default_tablename=None)
Read an SNANA-format ascii file.

Such files may contain metadata lines and one or more tables. See Notes for a summary of the format.

Parameters

fname [str] Filename of object to read.

default_tablename [str, optional] Default tablename, or the string that indicates a table row,
when a table starts with ‘NVAR:’ rather than ‘NVAR_TABLENAME:’.

array [bool, optional] If True, each table is converted to a numpy array. If False, each table is a
dictionary of lists (each list is a column). Default is True.

Returns

meta [OrderedDict] Metadata from keywords.

tables [dict of Table] Tables, indexed by table name.

Notes

The file can contain one or more tables, as well as optional metadata. Here is an example of the expected format:

META1: a
META2: 6
NVAR_SN: 3
VARNAMES: A B C
SN: 1 2.0 x
SN: 4 5.0 y

Behavior:

• Any strings ending in a colon (:) are treated as keywords.

• The start of a new table is indicated by a keyword starting with ‘NVAR’.

• If the ‘NVAR’ is followed by an underscore (e.g., ‘NVAR_TABLENAME’), then ‘TABLENAME’ is taken
to be the name of the table. Otherwise the user must specify a default_tablename. This is because data
rows are identified by the tablename.

• After a keyword starting with ‘NVAR’, the next keyword must be ‘VARNAMES’. The strings following
give the column names.

11.5. Reference / API 69

https://numpy.org/doc/stable/reference/generated/numpy.array.html#numpy.array
https://numpy.org/doc/stable/reference/generated/numpy.array.html#numpy.array
https://numpy.org/doc/stable/reference/generated/numpy.array.html#numpy.array
https://docs.astropy.org/en/stable/api/astropy.table.Table.html#astropy.table.Table

sncosmo Documentation, Release 2.6.0

• Any other keywords anywhere in the file are treated as metadata. The first string after the keyword is treated
as the value for that keyword.

• Note: Newlines are treated as equivalent to spaces; they do not indicate a new row. This is necessary
because some SNANA-format files have multiple metadata on a single row or single table rows split over
multiple lines, making newline characters meaningless.

Examples

>>> from io import StringIO # StringIO behaves like a file
>>> f = StringIO('META1: a\n'
... 'META2: 6\n'
... 'NVAR_SN: 3\n'
... 'VARNAMES: A B C\n'
... 'SN: 1 2.0 x\n'
... 'SN: 4 5.0 y\n')
...
>>> meta, tables = read_snana_ascii(f)

The first object is a dictionary of metadata:

>>> meta
OrderedDict([('META1', 'a'), ('META2', 6)])

The second is a dictionary of all the tables in the file:

>>> tables['SN']
<Table rows=2 names=('A','B','C')>
array([(1, 2.0, 'x'), (4, 5.0, 'y')],

dtype=[('A', '<i8'), ('B', '<f8'), ('C', 'S1')])

If the file had an ‘NVAR’ keyword rather than ‘NVAR_SN’, for example:

NVAR: 3
VARNAMES: A B C
SN: 1 2.0 x
SN: 4 5.0 y
SN: 5 8.2 z

it can be read by supplying a default table name:

>>> meta, tables = read_snana_ascii(f, default_tablename='SN')

sncosmo.read_snana_fits

sncosmo.read_snana_fits(head_file, phot_file, snids=None, n=None)
Read the SNANA FITS format: two FITS files jointly representing metadata and photometry for a set of SNe.

Parameters

head_file [str] Filename of “HEAD” (“header”) FITS file.

phot_file [str] Filename of “PHOT” (“photometry”) FITS file.

snids [list of str, optional] If given, only return the single entry with the matching SNIDs.

70 Chapter 11. Examples

sncosmo Documentation, Release 2.6.0

n [int] If given, only return the first n entries.

Returns

sne [list of Table] Each item in the list is an astropy Table instance.

Notes

If head_file contains a column ‘SNID’ containing strings, leading and trailing whitespace is stripped from all
the values in that column.

If phot_file contains a column ‘FLT’, leading and trailing whitespace is stripped from all the values in that
column.

Examples

>>> sne = read_snana_fits('HEAD.fits', 'PHOT.fits')
>>> for sn in sne:
... sn.meta # Metadata in an OrderedDict.
... sn['MJD'] # MJD column

sncosmo.read_snana_simlib

sncosmo.read_snana_simlib(fname)
Read an SNANA ‘simlib’ (simulation library) ascii file.

Parameters

fname [str] Filename.

Returns

meta [OrderedDict] Global meta data, not associated with any one LIBID. If DOCANA is
present, it is stored in meta['DOCUMENTATION'].

observation_sets [OrderedDict of astropy.table.Table] keys are LIBIDs, values are ob-
servation sets.

Notes

• Anything following ‘#’ on each line is ignored as a comment.

• Keywords are space separated strings ending wth a colon.

• If a line starts with ‘LIBID:’, the following lines are associated with the value of LIBID, until
‘END_LIBID:’ is encountered.

• While reading a given LIBID, lines starting with ‘S’ or ‘T’ keywords are assumed to contain 12 space-
separated values after the keyword. These are (1) MJD, (2) IDEXPT, (3) FLT, (4) CCD GAIN, (5) CCD
NOISE, (6) SKYSIG, (7) PSF1, (8) PSF2, (9) PSF 2/1 RATIO, (10) ZPTAVG, (11) ZPTSIG, (12) MAG.

• Column (2) may represent co-added observations in a ‘111*1’ format. In this case, the ‘IDEXPT’ column
is split at the ‘*’ into ‘IDEXPT’ and ‘NEXPOSE’

• Other lines inside a ‘LIBID:’/’END_LIBID:’ pair are treated as metadata for that LIBID.

• Any other keywords outside a ‘LIBID:’/’END_LIBID:’ pair are treated as global header keywords and are
returned in the meta dictionary.

11.5. Reference / API 71

https://docs.astropy.org/en/stable/api/astropy.table.Table.html#astropy.table.Table
https://docs.astropy.org/en/stable/api/astropy.table.Table.html#astropy.table.Table

sncosmo Documentation, Release 2.6.0

Examples

>>> meta, obs_sets = read_snana_simlib('filename')

The second object is a dictionary of astropy Tables indexed by LIBID:

>>> obs_sets.keys()
[0, 1, 2, 3, 4]

Each table (libid) has metadata:

>>> obs_sets[0].meta
OrderedDict([('LIBID', 0), ('RA', 52.5), ('DECL', -27.5), ('NOBS', 161),

('MWEBV', 0.0), ('PIXSIZE', 0.27)])

Each table has the following columns:

>>> obs_sets[0].colnames
['SEARCH', 'MJD', 'IDEXPT', 'FLT', 'CCD_GAIN', 'CCD_NOISE', 'SKYSIG',
'PSF1', 'PSF2', 'PSFRATIO', 'ZPTAVG', 'ZPTSIG', 'MAG']

sncosmo.read_griddata_ascii

sncosmo.read_griddata_ascii(name_or_obj)
Read 2-d grid data from a text file.

Each line has values x0 x1 y. Space separated. x1 values are only read for first x0 value. Others are assumed
to match.

Parameters

name_or_obj [str or file-like object]

Returns

x0 [numpy.ndarray] 1-d array.

x1 [numpy.ndarray] 1-d array.

y [numpy.ndarray] 2-d array of shape (len(x0), len(x1)).

sncosmo.read_griddata_fits

sncosmo.read_griddata_fits(name_or_obj, ext=0)
Read a multi-dimensional grid of data from a FITS file, where the grid coordinates are encoded in the FITS-WCS
header keywords.

Parameters

name_or_obj [str or file-like object]

Returns

x0, x1, . . . [ndarray] 1-d arrays giving coordinates of grid. The number of these arrays will
depend on the dimension of the data array. For example, if the data have two dimensions, a
total of three arrays will be returned: x0, x1, y, with x0 giving the coordinates of the first
axis of y. If the data have three dimensions, a total of four arrays will be returned: x0, x1,
x2, y, and so on with higher dimensions.

72 Chapter 11. Examples

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

sncosmo Documentation, Release 2.6.0

y [ndarray] n-d array of shape (len(x0), len(x1), ...). For three dimensions for exam-
ple, the value at y[i, j, k] corresponds to coordinates (x0[i], x1[j], x2[k]).

sncosmo.write_griddata_ascii

sncosmo.write_griddata_ascii(x0, x1, y, name_or_obj)
Write 2-d grid data to a text file.

Each line has values x0 x1 y. Space separated.

Parameters

x0 [numpy.ndarray] 1-d array.

x1 [numpy.ndarray] 1-d array.

y [numpy.ndarray] 2-d array of shape (len(x0), len(x1)).

name_or_obj [str or file-like object] Filename to write to or open file.

sncosmo.write_griddata_fits

sncosmo.write_griddata_fits(x0, x1, y, name_or_obj)
Write a 2-d grid of data to a FITS file

The grid coordinates are encoded in the FITS-WCS header keywords.

Parameters

x0 [numpy.ndarray] 1-d array.

x1 [numpy.ndarray] 1-d array.

y [numpy.ndarray] 2-d array of shape (len(x0), len(x1)).

name_or_obj [str or file-like object] Filename to write to or open file.

11.5.4 Spectra

Spectrum([wave, flux, fluxerr, fluxcov, ...]) An observed spectrum of an object.

sncosmo.Spectrum

class sncosmo.Spectrum(wave=None, flux=None, fluxerr=None, fluxcov=None, bin_edges=None,
wave_unit=Unit('Angstrom'), unit=Unit('erg / (Angstrom cm2 s)'), time=None)

An observed spectrum of an object.

This class is designed to represent an observed spectrum. An observed spectrum is a set of contiguous bins in
wavelength (referred to as “spectral elements”) with associated flux measurements. We assume that each spectral
element has uniform transmission in wavelength. A spectrum can optionally have associated uncertainties or
covariance between the observed fluxes of the different spectral elements. A spectrum can also optionally have
a time associated with it.

Internally, we store the edges of each of the spectral element wavelength bins. These are automatically recovered
in the common case where a user has a list of central wavelengths for each bin. The wavelengths are stored
internally in units of Angstroms. The flux is stored as a spectral flux density F_ (units of erg / s / cm^2 / Angstrom).

11.5. Reference / API 73

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

sncosmo Documentation, Release 2.6.0

Parameters

wave [list-like] Central wavelengths of each spectral element. This must be monotonically in-
creasing. This is assumed to be in units of Angstroms unless wave_unit is specified.

flux [list-like] Observed fluxes for each spectral element. By default this is assumed to be a
spectral flux density F_ unless unit is explicitly specified.

fluxerr [list-like] Uncertainties on the observed fluxes for each spectral element.

fluxcov [two-dimensional ndarray] Covariance of the observed fluxes for each spectral element.
Only one of fluxerr and fluxcov may be specified.

bin_edges [list-like] Edges of each spectral element in wavelength. This should be a list that is
length one longer than flux. Only one of wave and bin_edges may be specified.

wave_unit [Unit] Wavelength unit. Default is Angstroms.

unit [Unit] Flux unit. Default is F_ (erg / s / cm^2 / Angstrom).

time [float] The time associated with the spectrum. This is required if fitting a model to the
spectrum.

__init__(wave=None, flux=None, fluxerr=None, fluxcov=None, bin_edges=None,
wave_unit=Unit('Angstrom'), unit=Unit('erg / (Angstrom cm2 s)'), time=None)

Methods

__init__([wave, flux, fluxerr, fluxcov, ...])

bandflux(band[, zp, zpsys]) Perform synthentic photometry in a given bandpass.
bandfluxcov(band[, zp, zpsys]) Like bandflux(), but also returns model covariance on

values.
bandmag(band, magsys) Magnitude through the given bandpass(es), and for

the given magnitude system(s).
get_sampling_matrix() Build an appropriate sampling for the spectral ele-

ments.
has_uncertainties() Check whether there is uncertainty information avail-

able.
rebin([wave, bin_edges]) Rebin the spectrum on a new wavelength grid.

Attributes

bin_ends Return the end of each bin.
bin_starts Return the start of each bin.
fluxcov Return the covariance matrix
fluxerr Return the uncertainties on each flux bin
wave Return the centers of each bin.

74 Chapter 11. Examples

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.astropy.org/en/stable/api/astropy.units.Unit.html#astropy.units.Unit
https://docs.astropy.org/en/stable/api/astropy.units.Unit.html#astropy.units.Unit

sncosmo Documentation, Release 2.6.0

11.5.5 Fitting Photometric Data

Estimate model parameters from photometric data

fit_lc([data, model, vparam_names, bounds, ...]) Fit model parameters to data by minimizing chi^2.
mcmc_lc(data, model, vparam_names[, bounds, ...]) Run an MCMC chain to get model parameter samples.
nest_lc(data, model, vparam_names, bounds[, ...]) Run nested sampling algorithm to estimate model pa-

rameters and evidence.

sncosmo.fit_lc

sncosmo.fit_lc(data=None, model=None, vparam_names=[], bounds=None, spectra=None, method='minuit',
guess_amplitude=True, guess_t0=True, guess_z=True, minsnr=5.0, modelcov=False,
verbose=False, maxcall=10000, phase_range=None, wave_range=None, warn=True)

Fit model parameters to data by minimizing chi^2.

Ths function defines a chi^2 to minimize, makes initial guesses for t0 and amplitude, then runs a minimizer.

Parameters

data [Table or ndarray or dict] Table of photometric data. Must include certain columns.
See the “Photometric Data” section of the documentation for required columns.

model [Model] The model to fit.

vparam_names [list] Model parameters to vary in the fit.

bounds [dict, optional] Bounded range for each parameter. Keys should be parameter names,
values are tuples. If a bound is not given for some parameter, the parameter is unbounded.
The exception is t0: by default, the minimum bound is such that the latest phase of the model
lines up with the earliest data point and the maximum bound is such that the earliest phase
of the model lines up with the latest data point.

spectra [Spectrum or list of Spectrum objects] A list of spectra to include in the fit.

guess_amplitude [bool, optional] Whether or not to guess the amplitude from the data. If false,
the current model amplitude is taken as the initial value. Only has an effect when fitting
amplitude. Default is True.

guess_t0 [bool, optional] Whether or not to guess t0. Only has an effect when fitting t0. Default
is True.

guess_z [bool, optional] Whether or not to guess z (redshift). Only has an effect when fitting
redshift. Default is True.

minsnr [float, optional] When guessing amplitude and t0, only use data with signal-to-noise
ratio (flux / fluxerr) greater than this value. Default is 5.

method [{‘minuit’}, optional] Minimization method to use. Currently there is only one choice.

modelcov [bool, optional] Include model covariance when calculating chisq. Default is False.
If true, the fit is performed multiple times until convergence.

phase_range [(float, float), optional] If given, discard data outside this range of phases. Note
that the definition of phase varies between models: For example, phase=0 refers to explo-
sion time in some models and time of peak B band flux in others.

New in version 1.5.0

11.5. Reference / API 75

https://docs.astropy.org/en/stable/api/astropy.table.Table.html#astropy.table.Table
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

sncosmo Documentation, Release 2.6.0

wave_range [(float, float), optional] If given, discard data with bandpass effective wavelengths
outside this range.

New in version 1.5.0

verbose [bool, optional] Print messages during fitting.

warn [bool, optional] Issue a warning when dropping bands outside the wavelength range of the
model. Default is True.

New in version 1.5.0

Returns

res [Result] The optimization result represented as a Result object, which is a dict subclass
with attribute access. Therefore, res.keys() provides a list of the attributes. Attributes
are:

• success: boolean describing whether fit succeeded.

• message: string with more information about exit status.

• ncall: number of function evaluations.

• chisq: minimum chi^2 value.

• ndof: number of degrees of freedom (len(data) - len(vparam_names)).

• param_names: same as model.param_names.

• parameters: 1-d ndarray of best-fit values (including fixed parameters) corresponding
to param_names.

• vparam_names: list of varied parameter names.

• covariance: 2-d ndarray of parameter covariance; indicies correspond to order of
vparam_names.

• errors: OrderedDict of varied parameter uncertainties. Corresponds to square root of
diagonal entries in covariance matrix.

• nfit: number of times the fit was performed. Can be greater than one when model co-
variance, phase range or wavelength range is used. New in version 1.5.0.

• data_mask: Boolean array the same length as data specifying whether each observation
was used in the final fit. New in version 1.5.0.

fitmodel [Model] A copy of the model with parameters set to best-fit values.

Notes

t0 guess: If t0 is being fit and guess_t0=True, the function will guess the initial starting point for t0 based
on the data. The guess is made as follows:

• Evaluate the time and value of peak flux for the model in each band given the current model parameters.

• Determine the data point with maximum flux in each band, for points with signal-to-noise ratio > minsnr
(default is 5). If no points meet this criteria, the band is ignored (for the purpose of guessing only).

• For each band, compare model’s peak flux to the peak data point. Choose the band with the highest ratio
of data / model.

• Set t0 so that the model’s time of peak in the chosen band corresponds to the peak data point in this band.

76 Chapter 11. Examples

https://docs.python.org/3/library/stdtypes.html#dict
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

sncosmo Documentation, Release 2.6.0

amplitude guess: If amplitude (assumed to be the first model parameter) is being fit and
guess_amplitude=True, the function will guess the initial starting point for the amplitude based on the
data.

redshift guess: If redshift (z) is being fit and guess_z=True, the function will set the initial value of z to the
average of the bounds on z.

Examples

The flatten_result function can be used to make the result a dictionary suitable for appending as rows of a
table:

>>> from astropy.table import Table
>>> table_rows = []
>>> for sn in sne:
... res, fitmodel = sncosmo.fit_lc(
... sn, model, ['t0', 'x0', 'x1', 'c'])
... table_rows.append(flatten_result(res))
>>> t = Table(table_rows)

sncosmo.mcmc_lc

sncosmo.mcmc_lc(data, model, vparam_names, bounds=None, priors=None, guess_amplitude=True,
guess_t0=True, guess_z=True, minsnr=5.0, modelcov=False, nwalkers=10, nburn=200,
nsamples=1000, sampler='ensemble', thin=1, a=2.0, warn=True)

Run an MCMC chain to get model parameter samples.

This is a convenience function around emcee.EnsembleSampler. It defines the likelihood function and makes
a heuristic guess at a good set of starting points for the walkers. It then runs the sampler, starting with a burn-in
run.

If you’re not getting good results, you might want to try increasing the burn-in, increasing the walkers, or speci-
fying a better starting position. To get a better starting position, you could first run fit_lc, then run this function
with all guess_[name] keyword arguments set to False, so that the current model parameters are used as the
starting point.

Parameters

data [Table or ndarray or dict] Table of photometric data. Must include certain columns.
See the “Photometric Data” section of the documentation for required columns.

model [Model] The model to fit.

vparam_names [iterable] Model parameters to vary.

bounds [dict, optional] Bounded range for each parameter. Keys should be parameter names,
values are tuples. If a bound is not given for some parameter, the parameter is unbounded.
The exception is t0: by default, the minimum bound is such that the latest phase of the model
lines up with the earliest data point and the maximum bound is such that the earliest phase
of the model lines up with the latest data point.

priors [dict, optional] Prior probability functions. Keys are parameter names, values are func-
tions that return probability given the parameter value. The default prior is a flat distribution.

guess_amplitude [bool, optional] Whether or not to guess the amplitude from the data. If false,
the current model amplitude is taken as the initial value. Only has an effect when fitting
amplitude. Default is True.

11.5. Reference / API 77

https://emcee.readthedocs.io/en/stable/user/sampler/#emcee.EnsembleSampler
https://docs.astropy.org/en/stable/api/astropy.table.Table.html#astropy.table.Table
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

sncosmo Documentation, Release 2.6.0

guess_t0 [bool, optional] Whether or not to guess t0. Only has an effect when fitting t0. Default
is True.

guess_z [bool, optional] Whether or not to guess z (redshift). Only has an effect when fitting
redshift. Default is True.

minsnr [float, optional] When guessing amplitude and t0, only use data with signal-to-noise
ratio (flux / fluxerr) greater than this value. Default is 5.

modelcov [bool, optional] Include model covariance when calculating chisq. Default is False.

nwalkers [int, optional] Number of walkers in the sampler.

nburn [int, optional] Number of samples in burn-in phase.

nsamples [int, optional] Number of samples in production run.

sampler: str, optional The kind of sampler to use. Currently only ‘ensemble’ for emcee.
EnsembleSampler is supported.

thin [int, optional] Factor by which to thin samples in production run. Output samples array will
have (nsamples/thin) samples.

a [float, optional] Proposal scale parameter passed to the sampler.

warn [bool, optional] Issue a warning when dropping bands outside the wavelength range of the
model. Default is True.

New in version 1.5.0

Returns

res [Result] Has the following attributes:

• param_names: All parameter names of model, including fixed.

• parameters: Model parameters, with varied parameters set to mean value in samples.

• vparam_names: Names of parameters varied. Order of parameters matches order of sam-
ples.

• samples: 2-d array with shape (N, len(vparam_names)). Order of parameters in each
row matches order in res.vparam_names.

• covariance: 2-d array giving covariance, measured from samples. Order corresponds
to res.vparam_names.

• errors: dictionary giving square root of diagonal of covariance matrix for varied param-
eters. Useful for plot_lc.

• mean_acceptance_fraction: mean acceptance fraction for all walkers in the sampler.

• ndof: Number of degrees of freedom (len(data) - len(vparam_names)). New in version
1.5.0.

• data_mask: Boolean array the same length as data specifying whether each observation
was used. New in version 1.5.0.

est_model [Model] Copy of input model with varied parameters set to mean value in samples.

78 Chapter 11. Examples

https://emcee.readthedocs.io/en/stable/user/sampler/#emcee.EnsembleSampler
https://emcee.readthedocs.io/en/stable/user/sampler/#emcee.EnsembleSampler

sncosmo Documentation, Release 2.6.0

sncosmo.nest_lc

sncosmo.nest_lc(data, model, vparam_names, bounds, guess_amplitude_bound=False, minsnr=5.0,
priors=None, ppfs=None, npoints=100, method='single', maxiter=None, maxcall=None,
modelcov=False, rstate=None, verbose=False, warn=True, **kwargs)

Run nested sampling algorithm to estimate model parameters and evidence.

Parameters

data [Table or ndarray or dict] Table of photometric data. Must include certain columns.
See the “Photometric Data” section of the documentation for required columns.

model [Model] The model to fit.

vparam_names [list] Model parameters to vary in the fit.

bounds [dict] Bounded range for each parameter. Bounds must be given for each parameter,
with the exception of t0: by default, the minimum bound is such that the latest phase of the
model lines up with the earliest data point and the maximum bound is such that the earliest
phase of the model lines up with the latest data point.

guess_amplitude_bound [bool, optional] If true, bounds for the model’s amplitude parameter
are determined automatically based on the data and do not need to be included in bounds.
The lower limit is set to zero and the upper limit is 10 times the amplitude “guess” (which is
based on the highest-flux data point in any band). Default is False.

minsnr [float, optional] Minimum signal-to-noise ratio of data points to use when guessing
amplitude bound. Default is 5.

priors [dict, optional] Prior probability distribution function for each parameter. The keys
should be parameter names and the values should be callables that accept a float. If a param-
eter is not in the dictionary, the prior defaults to a flat distribution between the bounds.

ppfs [dict, optional] Prior percent point function (inverse of the cumulative distribution func-
tion) for each parameter. If a parameter is in this dictionary, the ppf takes precedence over a
prior pdf specified in priors.

npoints [int, optional] Number of active samples to use. Increasing this value increases the
accuracy (due to denser sampling) and also the time to solution.

method [{‘classic’, ‘single’, ‘multi’}, optional] Method used to select new points. Choices are
‘classic’, single-ellipsoidal (‘single’), multi-ellipsoidal (‘multi’). Default is ‘single’.

maxiter [int, optional] Maximum number of iterations. Iteration may stop earlier if termination
condition is reached. Default is no limit.

maxcall [int, optional] Maximum number of likelihood evaluations. Iteration may stop earlier
if termination condition is reached. Default is no limit.

modelcov [bool, optional] Include model covariance when calculating chisq. Default is False.

rstate [RandomState, optional] RandomState instance. If not given, the global random state of
the numpy.random module will be used.

verbose [bool, optional] Print running evidence sum on a single line.

warn [bool, optional] Issue warning when dropping bands outside the model range. Default is
True.

New in version 1.5.0

Returns

res [Result] Attributes are:

11.5. Reference / API 79

https://docs.astropy.org/en/stable/api/astropy.table.Table.html#astropy.table.Table
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://numpy.org/doc/stable/reference/random/legacy.html#numpy.random.RandomState

sncosmo Documentation, Release 2.6.0

• niter: total number of iterations

• ncall: total number of likelihood function calls

• time: time in seconds spent in iteration loop.

• logz: natural log of the Bayesian evidence Z.

• logzerr: estimate of uncertainty in logz (due to finite sampling)

• h: Bayesian information.

• vparam_names: list of parameter names varied.

• samples: 2-d ndarray, shape is (nsamples, nparameters). Each row is the parameter
values for a single sample. For example, samples[0, :] is the parameter values for the
first sample.

• logprior: 1-d ndarray (length=nsamples); log(prior volume) for each sample.

• logl: 1-d ndarray (length=nsamples); log(likelihood) for each sample.

• weights: 1-d ndarray (length=nsamples); Weight corresponding to each sample. The
weight is proportional to the prior * likelihood for the sample.

• parameters: 1-d ndarray of weighted-mean parameter values from samples (including
fixed parameters). Order corresponds to model.param_names.

• covariance: 2-d ndarray of parameter covariance; indicies correspond to order of
vparam_names. Calculated from samples and weights.

• errors: OrderedDict of varied parameter uncertainties. Corresponds to square root of
diagonal entries in covariance matrix.

• ndof: Number of degrees of freedom (len(data) - len(vparam_names)).

• bounds: Dictionary of bounds on varied parameters (including any automatically deter-
mined bounds).

• data_mask: Boolean array the same length as data specifying whether each observation
was used. New in version 1.5.0.

estimated_model [Model] A copy of the model with parameters set to the values in res.
parameters.

Convenience functions

select_data(data, index) Convenience function for indexing photometric data
with covariance.

chisq(data, model[, modelcov]) Calculate chisq statistic for the model, given the data.
flatten_result(res) Turn a result from fit_lc into a simple dictionary of key,

value pairs.

80 Chapter 11. Examples

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

sncosmo Documentation, Release 2.6.0

sncosmo.select_data

sncosmo.select_data(data, index)
Convenience function for indexing photometric data with covariance.

This is like data[index] on an astropy Table, but handles covariance columns correctly.

Parameters

data [Table] Table of photometric data.

index [slice or array or int] Row selection to apply to table.

Returns

Table

Examples

We have a small table of photometry with a covariance column and we want to select some rows based on a
mask:

>>> data = Table([[1., 2., 3.],
... ['a', 'b', 'c'],
... [[1.1, 1.2, 1.3],
... [2.1, 2.2, 2.3],
... [3.1, 3.2, 3.3]]],
... names=['time', 'x', 'cov'])
>>> mask = np.array([True, True, False])

Selecting directly on the table, the covariance column is not sliced in each row: it has shape (2, 3) when it should
be (2, 2):

>>> data[mask]
<Table length=2>
time x cov [3]

float64 str1 float64
------- ---- ----------

1.0 a 1.1 .. 1.3
2.0 b 2.1 .. 2.3

Using select_data solves this:

>>> sncosmo.select_data(data, mask)
<Table length=2>
time x cov [2]

float64 str1 float64
------- ---- ----------

1.0 a 1.1 .. 1.2
2.0 b 2.1 .. 2.2

11.5. Reference / API 81

https://docs.astropy.org/en/stable/api/astropy.table.Table.html#astropy.table.Table
https://docs.astropy.org/en/stable/api/astropy.table.Table.html#astropy.table.Table

sncosmo Documentation, Release 2.6.0

sncosmo.chisq

sncosmo.chisq(data, model, modelcov=False)
Calculate chisq statistic for the model, given the data.

Parameters

model [Model]

data [Table or ndarray or dict] Table of photometric data. Must include certain columns.
See the “Photometric Data” section of the documentation for required columns.

modelcov [bool] Include model covariance? Calls model.bandfluxcov method instead of
model.bandflux. The source in the model must therefore implement covariance.

Returns

chisq [float]

sncosmo.flatten_result

sncosmo.flatten_result(res)
Turn a result from fit_lc into a simple dictionary of key, value pairs.

Useful when saving results to a text file table, where structures like a covariance matrix cannot be easily written
to a single table row.

Parameters

res [Result] Result object from fit_lc.

Returns

flatres [Result] Flattened result. Keys are all strings, values are one of: float, int, string), suitable
for saving to a text file.

11.5.6 Plotting

Convenience functions for quick standard plots (requires matplotlib)

plot_lc([data, model, bands, zp, zpsys, ...]) Plot light curve data or model light curves.

sncosmo.plot_lc

sncosmo.plot_lc(data=None, model=None, bands=None, zp=25.0, zpsys='ab', pulls=True, xfigsize=None,
yfigsize=None, figtext=None, model_label=None, errors=None, ncol=2, figtextsize=1.0,
show_model_params=True, tighten_ylim=False, color=None, cmap=None,
cmap_lims=(3000.0, 10000.0), fill_data_marker=None, fname=None, fill_percentiles=None,
**kwargs)

Plot light curve data or model light curves.

Parameters

data [astropy Table or similar, optional] Table of photometric data. Must include certain col-
umn names. See the “Photometric Data” section of the documentation for required columns.

model [Model or list thereof, optional] If given, model light curve is plotted. If a string, the
corresponding model is fetched from the registry. If a list or tuple of Model, multiple models

82 Chapter 11. Examples

https://docs.astropy.org/en/stable/api/astropy.table.Table.html#astropy.table.Table
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.astropy.org/en/stable/api/astropy.table.Table.html#astropy.table.Table

sncosmo Documentation, Release 2.6.0

are plotted.

model_label [str or list, optional] If given, model(s) will be labeled in a legend in the upper left
subplot. Must be same length as model.

errors [dict, optional] Uncertainty on model parameters. If given, along with exactly one model,
uncertainty will be displayed with model parameters at the top of the figure.

bands [list, optional] List of Bandpasses, or names thereof, to plot.

zp [float, optional] Zeropoint to normalize the flux in the plot (for the purpose of plotting all
observations on a common flux scale). Default is 25.

zpsys [str, optional] Zeropoint system to normalize the flux in the plot (for the purpose of plotting
all observations on a common flux scale). Default is 'ab'.

pulls [bool, optional] If True (and if model and data are given), plot pulls. Pulls are the deviation
of the data from the model divided by the data uncertainty. Default is True.

figtext [str, optional] Text to add to top of figure. If a list of strings, each item is placed in a
separate “column”. Use newline separators for multiple lines.

ncol [int, optional] Number of columns of axes. Default is 2.

xfigsize, yfigsize [float, optional] figure size in inches in x or y. Specify one or the other, not
both. Default is to set axes panel size to 3.0 x 2.25 inches.

figtextsize [float, optional] Space to reserve at top of figure for figtext (if not None). Default is
1 inch.

show_model_params [bool, optional] If there is exactly one model plotted, the parameters of
the model are added to figtext by default (as two additional columns) so that they are
printed at the top of the figure. Set this to False to disable this behavior.

tighten_ylim [bool, optional] If true, tighten the y limits so that the model is visible (if any
models are plotted).

color [str or mpl_color, optional] Color of data and model lines in each band. Can be any type
of color that matplotlib understands. If None (default) a colormap will be used to choose a
color for each band according to its central wavelength.

cmap [Colormap, optional] A matplotlib colormap to use, if color is None. If both color and
cmap are None, a default colormap will be used.

cmap_lims [(float, float), optional] The wavelength limits for the colormap, in Angstroms.
Default is (3000., 10000.), meaning that a bandpass with a central wavelength of 3000
Angstroms will be assigned a color at the low end of the colormap and a bandpass with
a central wavelength of 10000 will be assigned a color at the high end of the colormap.

fill_data_marker [array_like, optional] Array of booleans indicating whether to plot a filled or
unfilled marker for each data point. Default is all filled markers.

fname [str, optional] Filename to pass to savefig. If None (default), figure is returned.

fill_percentiles [(float, float, float), optional] When multiple models are given, the percentiles
for a light curve confidence interval. The upper and lower perceniles define a fill between
region, and the middle percentile defines a line that will be plotted over the fill between
region.

kwargs [optional] Any additional keyword args are passed to savefig. Popular options include
dpi, format, transparent. See matplotlib docs for full list.

Returns

11.5. Reference / API 83

sncosmo Documentation, Release 2.6.0

fig [matplotlib Figure] Only returned if fname is None. Display to screen with plt.show()
or save with fig.savefig(filename). When creating many figures, be sure to close with
plt.close(fig).

Examples

>>> import sncosmo
>>> import matplotlib.pyplot as plt

Load some example data:

>>> data = sncosmo.load_example_data()

Plot the data, displaying to the screen:

>>> fig = plot_lc(data)
>>> plt.show()

Plot a model along with the data:

>>> model = sncosmo.Model('salt2')
>>> model.set(z=0.5, c=0.2, t0=55100., x0=1.547e-5)
>>> sncosmo.plot_lc(data, model=model)

Plot just the model, for selected bands:

84 Chapter 11. Examples

https://docs.python.org/3/library/constants.html#None

sncosmo Documentation, Release 2.6.0

>>> sncosmo.plot_lc(model=model,
... bands=['sdssg', 'sdssr'])

Plot figures on a multipage pdf:

>>> from matplotlib.backends.backend_pdf import PdfPages
>>> pp = PdfPages('output.pdf')

>>> # Do the following as many times as you like:
>>> sncosmo.plot_lc(data, fname=pp, format='pdf')

>>> # Don't forget to close at the end:
>>> pp.close()

11.5.7 Simulation

zdist(zmin, zmax[, time, area, ratefunc, ...]) Generate a distribution of redshifts.
realize_lcs(observations, model, params[, ...]) Realize data for a set of SNe given a set of observations.

sncosmo.zdist

sncosmo.zdist(zmin, zmax, time=365.25, area=1.0, ratefunc=<function <lambda>>,
cosmo=FlatLambdaCDM(H0=70 km / (Mpc s), Om0=0.3, Tcmb0=0 K, Neff=3.04, m_nu=None,
Ob0=None))

Generate a distribution of redshifts.

Generates the correct redshift distribution and number of SNe, given the input volumetric SN rate, the cosmology,
and the observed area and time.

Parameters

zmin, zmax [float] Minimum and maximum redshift.

time [float, optional] Time in days (default is 1 year).

area [float, optional] Area in square degrees (default is 1 square degree). time and area are
only used to determine the total number of SNe to generate.

ratefunc [callable] A callable that accepts a single float (redshift) and returns the comoving
volumetric rate at each redshift in units of yr^-1 Mpc^-3. The default is a function that
returns 1.e-4.

cosmo [Cosmology, optional] Cosmology used to determine volume. The default is a Flat-
LambdaCDM cosmology with Om0=0.3, H0=70.0.

11.5. Reference / API 85

https://docs.astropy.org/en/stable/api/astropy.cosmology.Cosmology.html#astropy.cosmology.Cosmology

sncosmo Documentation, Release 2.6.0

Examples

Loop over the generator:

>>> for z in zdist(0.0, 0.25):
... print(z)
...
0.151285827576
0.204078030595
0.201009196731
0.181635472172
0.17896188781
0.226561237264
0.192747368762

This tells us that in one observer-frame year, over 1 square degree, 7 SNe occured at redshifts below 0.35 (given
the default volumetric SN rate of 10^-4 SNe yr^-1 Mpc^-3). The exact number is drawn from a Poisson distri-
bution.

Generate the full list of redshifts immediately:

>>> zlist = list(zdist(0., 0.25))

Define a custom volumetric rate:

>>> def snrate(z):
... return 0.5e-4 * (1. + z)
...
>>> zlist = list(zdist(0., 0.25, ratefunc=snrate))

sncosmo.realize_lcs

sncosmo.realize_lcs(observations, model, params, thresh=None, trim_observations=False, scatter=True)
Realize data for a set of SNe given a set of observations.

Parameters

observations [Table or ndarray] Table of observations. Must contain the following column
names: band, time, zp, zpsys, gain, skynoise.

model [sncosmo.Model] The model to use in the simulation.

params [list (or generator) of dict] List of parameters to feed to the model for realizing each
light curve.

thresh [float, optional] If given, light curves are skipped (not returned) if none of the data points
have signal-to-noise greater than thresh.

trim_observations [bool, optional] If True, only observations with times between model.
mintime() and model.maxtime() are included in result table for each SN. Default is False.

scatter [bool, optional] If True, the flux value of the realized data is calculated by adding a
random number drawn from a Normal Distribution with a standard deviation equal to the
fluxerror of the observation to the bandflux value of the observation calculated from
model. Default is True.

Returns

86 Chapter 11. Examples

https://docs.astropy.org/en/stable/api/astropy.table.Table.html#astropy.table.Table
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

sncosmo Documentation, Release 2.6.0

sne [list of Table] Table of realized data for each item in params.

Notes

skynoise is the image background contribution to the flux measurement error (in units corresponding to the
specified zeropoint and zeropoint system). To get the error on a given measurement, skynoise is added in
quadrature to the photon noise from the source.

It is left up to the user to calculate skynoise as they see fit as the details depend on how photometry is done
and possibly how the PSF is is modeled. As a simple example, assuming a Gaussian PSF, and perfect PSF
photometry, skynoise would be 4 * pi * sigma_PSF * sigma_pixel where sigma_PSF is the standard
deviation of the PSF in pixels and sigma_pixel is the background noise in a single pixel in counts.

11.5.8 Registry

Register and retrieve custom built-in sources, bandpasses, and magnitude systems

register(instance[, name, data_class, force]) Register a class instance.
register_loader(data_class, name, func[, ...]) Register a data reading function.
get_source(name[, version, copy]) Retrieve a Source from the registry by name.
get_bandpass(name, *args) Get a Bandpass from the registry by name.
get_magsystem(name) Get a MagSystem from the registry by name.

sncosmo.register

sncosmo.register(instance, name=None, data_class=None, force=False)
Register a class instance.

Parameters

instance [object] The object to be registered.

name [str, optional] Identifier. If None, the name is taken from the name attribute of the instance,
if it exists and is a string.

data_class [classobj, optional] If given, the instance is registered as an instance of this class
rather the the class of the instance itself. Use this for registering subclasses when you wish
them to be accessible from their superclass.

force [bool, optional] Whether to override any existing instance of the same name. Note: this
may not play well with versioned instances.

sncosmo.register_loader

sncosmo.register_loader(data_class, name, func, args=None, version=None, meta=None, force=False)
Register a data reading function.

Parameters

data_class [classobj] The class of the object that the loader returns.

name [str] The data identifier.

func [callable] The function to read in the data. Must accept a name and version keyword argu-
ment.

11.5. Reference / API 87

https://docs.astropy.org/en/stable/api/astropy.table.Table.html#astropy.table.Table
https://docs.python.org/3/library/constants.html#None

sncosmo Documentation, Release 2.6.0

args [list, optional] Arguments to pass to the function. Default is an empty list.

version [str, optional] Sub-version of name, if desired. Use formats such as '1', '1.0', '1.0.
0', etc. Default is None.

force [bool, optional] Whether to override any existing function if already present.

meta [dict, optional] Metadata describing this loader. Default is an empty dictionary.

sncosmo.get_source

sncosmo.get_source(name, version=None, copy=False)
Retrieve a Source from the registry by name.

Parameters

name [str] Name of source in the registry.

version [str, optional] Version identifier for sources with multiple versions. Default is None
which corresponds to the latest, or only, version.

copy [bool, optional] If True and if name is already a Source instance, return a copy of it. (If
name is a str a copy of the instance in the registry is always returned, regardless of the value
of this parameter.) Default is False.

sncosmo.get_bandpass

sncosmo.get_bandpass(name, *args)
Get a Bandpass from the registry by name.

sncosmo.get_magsystem

sncosmo.get_magsystem(name)
Get a MagSystem from the registry by name.

88 Chapter 11. Examples

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

sncosmo Documentation, Release 2.6.0

11.5.9 Class Inheritance Diagrams

ABMagSystem

MagSystem CompositeMagSystem

SpectralMagSystem

AggregateBandpassBandpass

BandpassInterpolator

CCM89Dust

PropagationEffect F99Dust

OD94Dust

MLCS2k2Source

Source

SALT2Source

SNEMOSource

SUGARSource

StretchSource

TimeSeriesSource

Model

SALT3Source

11.5. Reference / API 89

sncosmo Documentation, Release 2.6.0

11.6 List of Built-in Sources

Name Version Type Subclass Reference Website Notes
‘nugent-sn1a’ ‘1.2’ SN Ia TimeSeriesSource [N02] a
‘nugent-sn91t’ ‘1.1’ SN Ia TimeSeriesSource [S04] a
‘nugent-sn91bg’ ‘1.1’ SN Ia TimeSeriesSource [N02] a
‘nugent-sn1bc’ ‘1.1’ SN Ib/c TimeSeriesSource [L05] a
‘nugent-hyper’ ‘1.2’ SN Ib/c TimeSeriesSource [L05] a
‘nugent-sn2p’ ‘1.2’ SN IIP TimeSeriesSource [G99] a
‘nugent-sn2l’ ‘1.2’ SN IIL TimeSeriesSource [G99] a
‘nugent-sn2n’ ‘2.1’ SN IIn TimeSeriesSource [G99] a
‘s11-2004hx’ ‘1.0’ SN IIL/P TimeSeriesSource [S11] b [1]
‘s11-2005lc’ ‘1.0’ SN IIP TimeSeriesSource [S11] b [1]
‘s11-2005hl’ ‘1.0’ SN Ib TimeSeriesSource [S11] b [1]
‘s11-2005hm’ ‘1.0’ SN Ib TimeSeriesSource [S11] b [1]
‘s11-2005gi’ ‘1.0’ SN IIP TimeSeriesSource [S11] b [1]
‘s11-2006fo’ ‘1.0’ SN Ic TimeSeriesSource [S11] b [1]
‘s11-2006jo’ ‘1.0’ SN Ib TimeSeriesSource [S11] b [1]
‘s11-2006jl’ ‘1.0’ SN IIP TimeSeriesSource [S11] b [1]
‘hsiao’ ‘1.0’ SN Ia TimeSeriesSource [H07] c [2]
‘hsiao’ ‘2.0’ SN Ia TimeSeriesSource [H07] c [2]
‘hsiao’ ‘3.0’ SN Ia TimeSeriesSource [H07] c [2]
‘hsiao-subsampled’ ‘3.0’ SN Ia TimeSeriesSource [H07] c [2]
‘salt2’ ‘2.0’ SN Ia SALT2Source [G10] d
‘salt2’ ‘2.4’ SN Ia SALT2Source [B14b] d
‘salt2-extended’ ‘1.0’ SN Ia SALT2Source b [3]
‘salt2-extended’ ‘2.0’ SN Ia SALT2Source
‘salt3’ ‘1.0’ SN Ia SALT3Source e [4]
‘salt2-extended-h17’ ‘1.0’ SN Ia SALT2Source [H17] f [5]
‘snf-2011fe’ ‘1.0’ SN Ia TimeSeriesSource [P13] g
‘snana-2004fe’ ‘1.0’ SN Ic TimeSeriesSource h [6]
‘snana-2004gq’ ‘1.0’ SN Ic TimeSeriesSource h [6]
‘snana-sdss004012’ ‘1.0’ SN Ic TimeSeriesSource h [6]
‘snana-2006fo’ ‘1.0’ SN Ic TimeSeriesSource h [6]
‘snana-sdss014475’ ‘1.0’ SN Ic TimeSeriesSource h [6]
‘snana-2006lc’ ‘1.0’ SN Ic TimeSeriesSource h [6]
‘snana-2007ms’ ‘1.0’ SN II-pec TimeSeriesSource h [6]
‘snana-04d1la’ ‘1.0’ SN Ic TimeSeriesSource h [6]
‘snana-04d4jv’ ‘1.0’ SN Ic TimeSeriesSource h [6]
‘snana-2004gv’ ‘1.0’ SN Ib TimeSeriesSource h [6]
‘snana-2006ep’ ‘1.0’ SN Ib TimeSeriesSource h [6]
‘snana-2007y’ ‘1.0’ SN Ib TimeSeriesSource h [6]
‘snana-2004ib’ ‘1.0’ SN Ib TimeSeriesSource h [6]
‘snana-2005hm’ ‘1.0’ SN Ib TimeSeriesSource h [6]
‘snana-2006jo’ ‘1.0’ SN Ib TimeSeriesSource h [6]
‘snana-2007nc’ ‘1.0’ SN Ib TimeSeriesSource h [6]
‘snana-2004hx’ ‘1.0’ SN IIP TimeSeriesSource h [6]
‘snana-2005gi’ ‘1.0’ SN IIP TimeSeriesSource h [6]
‘snana-2006gq’ ‘1.0’ SN IIP TimeSeriesSource h [6]
‘snana-2006kn’ ‘1.0’ SN IIP TimeSeriesSource h [6]

continues on next page

90 Chapter 11. Examples

https://c3.lbl.gov/nugent/nugent_templates.html
https://c3.lbl.gov/nugent/nugent_templates.html
https://c3.lbl.gov/nugent/nugent_templates.html
https://c3.lbl.gov/nugent/nugent_templates.html
https://c3.lbl.gov/nugent/nugent_templates.html
https://c3.lbl.gov/nugent/nugent_templates.html
https://c3.lbl.gov/nugent/nugent_templates.html
https://c3.lbl.gov/nugent/nugent_templates.html
http://sdssdp62.fnal.gov/sdsssn/SNANA-PUBLIC/
http://sdssdp62.fnal.gov/sdsssn/SNANA-PUBLIC/
http://sdssdp62.fnal.gov/sdsssn/SNANA-PUBLIC/
http://sdssdp62.fnal.gov/sdsssn/SNANA-PUBLIC/
http://sdssdp62.fnal.gov/sdsssn/SNANA-PUBLIC/
http://sdssdp62.fnal.gov/sdsssn/SNANA-PUBLIC/
http://sdssdp62.fnal.gov/sdsssn/SNANA-PUBLIC/
http://sdssdp62.fnal.gov/sdsssn/SNANA-PUBLIC/
http://csp.obs.carnegiescience.edu/data/snpy
http://csp.obs.carnegiescience.edu/data/snpy
http://csp.obs.carnegiescience.edu/data/snpy
http://csp.obs.carnegiescience.edu/data/snpy
http://supernovae.in2p3.fr/salt/doku.php?id=salt_templates
http://supernovae.in2p3.fr/salt/doku.php?id=salt_templates
http://sdssdp62.fnal.gov/sdsssn/SNANA-PUBLIC/
https://salt3.readthedocs.io/en/latest/
http://snana.uchicago.edu/
http://snfactory.lbl.gov/snf/data
http://das.sdss2.org/ge/sample/sdsssn/SNANA-PUBLIC/
http://das.sdss2.org/ge/sample/sdsssn/SNANA-PUBLIC/
http://das.sdss2.org/ge/sample/sdsssn/SNANA-PUBLIC/
http://das.sdss2.org/ge/sample/sdsssn/SNANA-PUBLIC/
http://das.sdss2.org/ge/sample/sdsssn/SNANA-PUBLIC/
http://das.sdss2.org/ge/sample/sdsssn/SNANA-PUBLIC/
http://das.sdss2.org/ge/sample/sdsssn/SNANA-PUBLIC/
http://das.sdss2.org/ge/sample/sdsssn/SNANA-PUBLIC/
http://das.sdss2.org/ge/sample/sdsssn/SNANA-PUBLIC/
http://das.sdss2.org/ge/sample/sdsssn/SNANA-PUBLIC/
http://das.sdss2.org/ge/sample/sdsssn/SNANA-PUBLIC/
http://das.sdss2.org/ge/sample/sdsssn/SNANA-PUBLIC/
http://das.sdss2.org/ge/sample/sdsssn/SNANA-PUBLIC/
http://das.sdss2.org/ge/sample/sdsssn/SNANA-PUBLIC/
http://das.sdss2.org/ge/sample/sdsssn/SNANA-PUBLIC/
http://das.sdss2.org/ge/sample/sdsssn/SNANA-PUBLIC/
http://das.sdss2.org/ge/sample/sdsssn/SNANA-PUBLIC/
http://das.sdss2.org/ge/sample/sdsssn/SNANA-PUBLIC/
http://das.sdss2.org/ge/sample/sdsssn/SNANA-PUBLIC/
http://das.sdss2.org/ge/sample/sdsssn/SNANA-PUBLIC/

sncosmo Documentation, Release 2.6.0

Table 53 – continued from previous page
Name Version Type Subclass Reference Website Notes
‘snana-2006jl’ ‘1.0’ SN IIP TimeSeriesSource h [6]
‘snana-2006iw’ ‘1.0’ SN IIP TimeSeriesSource h [6]
‘snana-2006kv’ ‘1.0’ SN IIP TimeSeriesSource h [6]
‘snana-2006ns’ ‘1.0’ SN IIP TimeSeriesSource h [6]
‘snana-2007iz’ ‘1.0’ SN IIP TimeSeriesSource h [6]
‘snana-2007nr’ ‘1.0’ SN IIP TimeSeriesSource h [6]
‘snana-2007kw’ ‘1.0’ SN IIP TimeSeriesSource h [6]
‘snana-2007ky’ ‘1.0’ SN IIP TimeSeriesSource h [6]
‘snana-2007lj’ ‘1.0’ SN IIP TimeSeriesSource h [6]
‘snana-2007lb’ ‘1.0’ SN IIP TimeSeriesSource h [6]
‘snana-2007ll’ ‘1.0’ SN IIP TimeSeriesSource h [6]
‘snana-2007nw’ ‘1.0’ SN IIP TimeSeriesSource h [6]
‘snana-2007ld’ ‘1.0’ SN IIP TimeSeriesSource h [6]
‘snana-2007md’ ‘1.0’ SN IIP TimeSeriesSource h [6]
‘snana-2007lz’ ‘1.0’ SN IIP TimeSeriesSource h [6]
‘snana-2007lx’ ‘1.0’ SN IIP TimeSeriesSource h [6]
‘snana-2007og’ ‘1.0’ SN IIP TimeSeriesSource h [6]
‘snana-2007ny’ ‘1.0’ SN IIP TimeSeriesSource h [6]
‘snana-2007nv’ ‘1.0’ SN IIP TimeSeriesSource h [6]
‘snana-2007pg’ ‘1.0’ SN IIP TimeSeriesSource h [6]
‘snana-2006ez’ ‘1.0’ SN IIn TimeSeriesSource h [6]
‘snana-2006ix’ ‘1.0’ SN IIn TimeSeriesSource h [6]
‘snana-2004fe’ ‘2.0’ SN Ic TimeSeriesSource
‘snana-2004gq’ ‘2.0’ SN Ic TimeSeriesSource
‘snana-sdss004012’ ‘2.0’ SN Ic TimeSeriesSource
‘snana-2006fo’ ‘2.0’ SN Ic TimeSeriesSource
‘snana-sdss014475’ ‘2.0’ SN Ic TimeSeriesSource
‘snana-2006lc’ ‘2.0’ SN Ic TimeSeriesSource
‘snana-2007ms’ ‘2.0’ SN II-pec TimeSeriesSource
‘snana-04d1la’ ‘2.0’ SN Ic TimeSeriesSource
‘snana-04d4jv’ ‘2.0’ SN Ic TimeSeriesSource
‘snana-2004gv’ ‘2.0’ SN Ib TimeSeriesSource
‘snana-2006ep’ ‘2.0’ SN Ib TimeSeriesSource
‘snana-2007y’ ‘2.0’ SN Ib TimeSeriesSource
‘snana-2004ib’ ‘2.0’ SN Ib TimeSeriesSource
‘snana-2005hm’ ‘2.0’ SN Ib TimeSeriesSource
‘snana-2006jo’ ‘2.0’ SN Ib TimeSeriesSource
‘snana-2007nc’ ‘2.0’ SN Ib TimeSeriesSource
‘snana-2004hx’ ‘2.0’ SN IIP TimeSeriesSource
‘snana-2005gi’ ‘2.0’ SN IIP TimeSeriesSource
‘snana-2006gq’ ‘2.0’ SN IIP TimeSeriesSource
‘snana-2006kn’ ‘2.0’ SN IIP TimeSeriesSource
‘snana-2006jl’ ‘2.0’ SN IIP TimeSeriesSource
‘snana-2006iw’ ‘2.0’ SN IIP TimeSeriesSource
‘snana-2006kv’ ‘2.0’ SN IIP TimeSeriesSource
‘snana-2006ns’ ‘2.0’ SN IIP TimeSeriesSource
‘snana-2007iz’ ‘2.0’ SN IIP TimeSeriesSource
‘snana-2007nr’ ‘2.0’ SN IIP TimeSeriesSource
‘snana-2007kw’ ‘2.0’ SN IIP TimeSeriesSource

continues on next page

11.6. List of Built-in Sources 91

http://das.sdss2.org/ge/sample/sdsssn/SNANA-PUBLIC/
http://das.sdss2.org/ge/sample/sdsssn/SNANA-PUBLIC/
http://das.sdss2.org/ge/sample/sdsssn/SNANA-PUBLIC/
http://das.sdss2.org/ge/sample/sdsssn/SNANA-PUBLIC/
http://das.sdss2.org/ge/sample/sdsssn/SNANA-PUBLIC/
http://das.sdss2.org/ge/sample/sdsssn/SNANA-PUBLIC/
http://das.sdss2.org/ge/sample/sdsssn/SNANA-PUBLIC/
http://das.sdss2.org/ge/sample/sdsssn/SNANA-PUBLIC/
http://das.sdss2.org/ge/sample/sdsssn/SNANA-PUBLIC/
http://das.sdss2.org/ge/sample/sdsssn/SNANA-PUBLIC/
http://das.sdss2.org/ge/sample/sdsssn/SNANA-PUBLIC/
http://das.sdss2.org/ge/sample/sdsssn/SNANA-PUBLIC/
http://das.sdss2.org/ge/sample/sdsssn/SNANA-PUBLIC/
http://das.sdss2.org/ge/sample/sdsssn/SNANA-PUBLIC/
http://das.sdss2.org/ge/sample/sdsssn/SNANA-PUBLIC/
http://das.sdss2.org/ge/sample/sdsssn/SNANA-PUBLIC/
http://das.sdss2.org/ge/sample/sdsssn/SNANA-PUBLIC/
http://das.sdss2.org/ge/sample/sdsssn/SNANA-PUBLIC/
http://das.sdss2.org/ge/sample/sdsssn/SNANA-PUBLIC/
http://das.sdss2.org/ge/sample/sdsssn/SNANA-PUBLIC/
http://das.sdss2.org/ge/sample/sdsssn/SNANA-PUBLIC/
http://das.sdss2.org/ge/sample/sdsssn/SNANA-PUBLIC/

sncosmo Documentation, Release 2.6.0

Table 53 – continued from previous page
Name Version Type Subclass Reference Website Notes
‘snana-2007ky’ ‘2.0’ SN IIP TimeSeriesSource
‘snana-2007lj’ ‘2.0’ SN IIP TimeSeriesSource
‘snana-2007lb’ ‘2.0’ SN IIP TimeSeriesSource
‘snana-2007ll’ ‘2.0’ SN IIP TimeSeriesSource
‘snana-2007nw’ ‘2.0’ SN IIP TimeSeriesSource
‘snana-2007ld’ ‘2.0’ SN IIP TimeSeriesSource
‘snana-2007md’ ‘2.0’ SN IIP TimeSeriesSource
‘snana-2007lz’ ‘2.0’ SN IIP TimeSeriesSource
‘snana-2007lx’ ‘2.0’ SN IIP TimeSeriesSource
‘snana-2007og’ ‘2.0’ SN IIP TimeSeriesSource
‘snana-2007ny’ ‘2.0’ SN IIP TimeSeriesSource
‘snana-2007nv’ ‘2.0’ SN IIP TimeSeriesSource
‘snana-2007pg’ ‘2.0’ SN IIP TimeSeriesSource
‘v19-asassn14jb-corr’ ‘1.0’ SN II TimeSeriesSource i [7]
‘v19-asassn14jb’ ‘1.0’ SN II TimeSeriesSource i [7]
‘v19-asassn15oz-corr’ ‘1.0’ SN II TimeSeriesSource i [7]
‘v19-asassn15oz’ ‘1.0’ SN II TimeSeriesSource i [7]
‘v19-1987a-corr’ ‘1.0’ SN II TimeSeriesSource i [7]
‘v19-1987a’ ‘1.0’ SN II TimeSeriesSource i [7]
‘v19-1993j-corr’ ‘1.0’ SN IIb TimeSeriesSource i [7]
‘v19-1993j’ ‘1.0’ SN IIb TimeSeriesSource i [7]
‘v19-1994i-corr’ ‘1.0’ SN Ic TimeSeriesSource i [7]
‘v19-1994i’ ‘1.0’ SN Ic TimeSeriesSource i [7]
‘v19-1998bw-corr’ ‘1.0’ SN Ic-BL TimeSeriesSource i [7]
‘v19-1998bw’ ‘1.0’ SN Ic-BL TimeSeriesSource i [7]
‘v19-1999dn-corr’ ‘1.0’ SN IIb TimeSeriesSource i [7]
‘v19-1999dn’ ‘1.0’ SN IIb TimeSeriesSource i [7]
‘v19-1999em-corr’ ‘1.0’ SN II TimeSeriesSource i [7]
‘v19-1999em’ ‘1.0’ SN II TimeSeriesSource i [7]
‘v19-2002ap-corr’ ‘1.0’ SN Ic-BL TimeSeriesSource i [7]
‘v19-2002ap’ ‘1.0’ SN Ic-BL TimeSeriesSource i [7]
‘v19-2004aw-corr’ ‘1.0’ SN Ic TimeSeriesSource i [7]
‘v19-2004aw’ ‘1.0’ SN Ic TimeSeriesSource i [7]
‘v19-2004et-corr’ ‘1.0’ SN II TimeSeriesSource i [7]
‘v19-2004et’ ‘1.0’ SN II TimeSeriesSource i [7]
‘v19-2004fe-corr’ ‘1.0’ SN Ic TimeSeriesSource i [7]
‘v19-2004fe’ ‘1.0’ SN Ic TimeSeriesSource i [7]
‘v19-2004gq-corr’ ‘1.0’ SN Ib TimeSeriesSource i [7]
‘v19-2004gq’ ‘1.0’ SN Ib TimeSeriesSource i [7]
‘v19-2004gt-corr’ ‘1.0’ SN Ic TimeSeriesSource i [7]
‘v19-2004gt’ ‘1.0’ SN Ic TimeSeriesSource i [7]
‘v19-2004gv-corr’ ‘1.0’ SN Ib TimeSeriesSource i [7]
‘v19-2004gv’ ‘1.0’ SN Ib TimeSeriesSource i [7]
‘v19-2005bf-corr’ ‘1.0’ SN Ib TimeSeriesSource i [7]
‘v19-2005bf’ ‘1.0’ SN Ib TimeSeriesSource i [7]
‘v19-2005hg-corr’ ‘1.0’ SN Ib TimeSeriesSource i [7]
‘v19-2005hg’ ‘1.0’ SN Ib TimeSeriesSource i [7]
‘v19-2006t-corr’ ‘1.0’ SN IIb TimeSeriesSource i [7]
‘v19-2006t’ ‘1.0’ SN IIb TimeSeriesSource i [7]

continues on next page

92 Chapter 11. Examples

https://github.com/maria-vincenzi/PyCoCo_templates
https://github.com/maria-vincenzi/PyCoCo_templates
https://github.com/maria-vincenzi/PyCoCo_templates
https://github.com/maria-vincenzi/PyCoCo_templates
https://github.com/maria-vincenzi/PyCoCo_templates
https://github.com/maria-vincenzi/PyCoCo_templates
https://github.com/maria-vincenzi/PyCoCo_templates
https://github.com/maria-vincenzi/PyCoCo_templates
https://github.com/maria-vincenzi/PyCoCo_templates
https://github.com/maria-vincenzi/PyCoCo_templates
https://github.com/maria-vincenzi/PyCoCo_templates
https://github.com/maria-vincenzi/PyCoCo_templates
https://github.com/maria-vincenzi/PyCoCo_templates
https://github.com/maria-vincenzi/PyCoCo_templates
https://github.com/maria-vincenzi/PyCoCo_templates
https://github.com/maria-vincenzi/PyCoCo_templates
https://github.com/maria-vincenzi/PyCoCo_templates
https://github.com/maria-vincenzi/PyCoCo_templates
https://github.com/maria-vincenzi/PyCoCo_templates
https://github.com/maria-vincenzi/PyCoCo_templates
https://github.com/maria-vincenzi/PyCoCo_templates
https://github.com/maria-vincenzi/PyCoCo_templates
https://github.com/maria-vincenzi/PyCoCo_templates
https://github.com/maria-vincenzi/PyCoCo_templates
https://github.com/maria-vincenzi/PyCoCo_templates
https://github.com/maria-vincenzi/PyCoCo_templates
https://github.com/maria-vincenzi/PyCoCo_templates
https://github.com/maria-vincenzi/PyCoCo_templates
https://github.com/maria-vincenzi/PyCoCo_templates
https://github.com/maria-vincenzi/PyCoCo_templates
https://github.com/maria-vincenzi/PyCoCo_templates
https://github.com/maria-vincenzi/PyCoCo_templates
https://github.com/maria-vincenzi/PyCoCo_templates
https://github.com/maria-vincenzi/PyCoCo_templates
https://github.com/maria-vincenzi/PyCoCo_templates
https://github.com/maria-vincenzi/PyCoCo_templates

sncosmo Documentation, Release 2.6.0

Table 53 – continued from previous page
Name Version Type Subclass Reference Website Notes
‘v19-2006aa-corr’ ‘1.0’ SN IIn TimeSeriesSource i [7]
‘v19-2006aa’ ‘1.0’ SN IIn TimeSeriesSource i [7]
‘v19-2006aj-corr’ ‘1.0’ SN Ic-BL TimeSeriesSource i [7]
‘v19-2006aj’ ‘1.0’ SN Ic-BL TimeSeriesSource i [7]
‘v19-2006ep-corr’ ‘1.0’ SN Ib TimeSeriesSource i [7]
‘v19-2006ep’ ‘1.0’ SN Ib TimeSeriesSource i [7]
‘v19-2007y-corr’ ‘1.0’ SN Ib TimeSeriesSource i [7]
‘v19-2007y’ ‘1.0’ SN Ib TimeSeriesSource i [7]
‘v19-2007gr-corr’ ‘1.0’ SN Ic TimeSeriesSource i [7]
‘v19-2007gr’ ‘1.0’ SN Ic TimeSeriesSource i [7]
‘v19-2007od-corr’ ‘1.0’ SN II TimeSeriesSource i [7]
‘v19-2007od’ ‘1.0’ SN II TimeSeriesSource i [7]
‘v19-2007pk-corr’ ‘1.0’ SN IIn TimeSeriesSource i [7]
‘v19-2007pk’ ‘1.0’ SN IIn TimeSeriesSource i [7]
‘v19-2007ru-corr’ ‘1.0’ SN Ic-BL TimeSeriesSource i [7]
‘v19-2007ru’ ‘1.0’ SN Ic-BL TimeSeriesSource i [7]
‘v19-2007uy-corr’ ‘1.0’ SN Ib TimeSeriesSource i [7]
‘v19-2007uy’ ‘1.0’ SN Ib TimeSeriesSource i [7]
‘v19-2008d-corr’ ‘1.0’ SN Ib TimeSeriesSource i [7]
‘v19-2008d’ ‘1.0’ SN Ib TimeSeriesSource i [7]
‘v19-2008aq-corr’ ‘1.0’ SN IIb TimeSeriesSource i [7]
‘v19-2008aq’ ‘1.0’ SN IIb TimeSeriesSource i [7]
‘v19-2008ax-corr’ ‘1.0’ SN IIb TimeSeriesSource i [7]
‘v19-2008ax’ ‘1.0’ SN IIb TimeSeriesSource i [7]
‘v19-2008bj-corr’ ‘1.0’ SN II TimeSeriesSource i [7]
‘v19-2008bj’ ‘1.0’ SN II TimeSeriesSource i [7]
‘v19-2008bo-corr’ ‘1.0’ SN IIb TimeSeriesSource i [7]
‘v19-2008bo’ ‘1.0’ SN IIb TimeSeriesSource i [7]
‘v19-2008fq-corr’ ‘1.0’ SN IIn TimeSeriesSource i [7]
‘v19-2008fq’ ‘1.0’ SN IIn TimeSeriesSource i [7]
‘v19-2008in-corr’ ‘1.0’ SN II TimeSeriesSource i [7]
‘v19-2008in’ ‘1.0’ SN II TimeSeriesSource i [7]
‘v19-2009n-corr’ ‘1.0’ SN II TimeSeriesSource i [7]
‘v19-2009n’ ‘1.0’ SN II TimeSeriesSource i [7]
‘v19-2009bb-corr’ ‘1.0’ SN Ic-BL TimeSeriesSource i [7]
‘v19-2009bb’ ‘1.0’ SN Ic-BL TimeSeriesSource i [7]
‘v19-2009bw-corr’ ‘1.0’ SN II TimeSeriesSource i [7]
‘v19-2009bw’ ‘1.0’ SN II TimeSeriesSource i [7]
‘v19-2009dd-corr’ ‘1.0’ SN II TimeSeriesSource i [7]
‘v19-2009dd’ ‘1.0’ SN II TimeSeriesSource i [7]
‘v19-2009ib-corr’ ‘1.0’ SN II TimeSeriesSource i [7]
‘v19-2009ib’ ‘1.0’ SN II TimeSeriesSource i [7]
‘v19-2009ip-corr’ ‘1.0’ SN IIn TimeSeriesSource i [7]
‘v19-2009ip’ ‘1.0’ SN IIn TimeSeriesSource i [7]
‘v19-2009iz-corr’ ‘1.0’ SN Ib TimeSeriesSource i [7]
‘v19-2009iz’ ‘1.0’ SN Ib TimeSeriesSource i [7]
‘v19-2009jf-corr’ ‘1.0’ SN Ib TimeSeriesSource i [7]
‘v19-2009jf’ ‘1.0’ SN Ib TimeSeriesSource i [7]
‘v19-2009kr-corr’ ‘1.0’ SN II TimeSeriesSource i [7]

continues on next page

11.6. List of Built-in Sources 93

https://github.com/maria-vincenzi/PyCoCo_templates
https://github.com/maria-vincenzi/PyCoCo_templates
https://github.com/maria-vincenzi/PyCoCo_templates
https://github.com/maria-vincenzi/PyCoCo_templates
https://github.com/maria-vincenzi/PyCoCo_templates
https://github.com/maria-vincenzi/PyCoCo_templates
https://github.com/maria-vincenzi/PyCoCo_templates
https://github.com/maria-vincenzi/PyCoCo_templates
https://github.com/maria-vincenzi/PyCoCo_templates
https://github.com/maria-vincenzi/PyCoCo_templates
https://github.com/maria-vincenzi/PyCoCo_templates
https://github.com/maria-vincenzi/PyCoCo_templates
https://github.com/maria-vincenzi/PyCoCo_templates
https://github.com/maria-vincenzi/PyCoCo_templates
https://github.com/maria-vincenzi/PyCoCo_templates
https://github.com/maria-vincenzi/PyCoCo_templates
https://github.com/maria-vincenzi/PyCoCo_templates
https://github.com/maria-vincenzi/PyCoCo_templates
https://github.com/maria-vincenzi/PyCoCo_templates
https://github.com/maria-vincenzi/PyCoCo_templates
https://github.com/maria-vincenzi/PyCoCo_templates
https://github.com/maria-vincenzi/PyCoCo_templates
https://github.com/maria-vincenzi/PyCoCo_templates
https://github.com/maria-vincenzi/PyCoCo_templates
https://github.com/maria-vincenzi/PyCoCo_templates
https://github.com/maria-vincenzi/PyCoCo_templates
https://github.com/maria-vincenzi/PyCoCo_templates
https://github.com/maria-vincenzi/PyCoCo_templates
https://github.com/maria-vincenzi/PyCoCo_templates
https://github.com/maria-vincenzi/PyCoCo_templates
https://github.com/maria-vincenzi/PyCoCo_templates
https://github.com/maria-vincenzi/PyCoCo_templates
https://github.com/maria-vincenzi/PyCoCo_templates
https://github.com/maria-vincenzi/PyCoCo_templates
https://github.com/maria-vincenzi/PyCoCo_templates
https://github.com/maria-vincenzi/PyCoCo_templates
https://github.com/maria-vincenzi/PyCoCo_templates
https://github.com/maria-vincenzi/PyCoCo_templates
https://github.com/maria-vincenzi/PyCoCo_templates
https://github.com/maria-vincenzi/PyCoCo_templates
https://github.com/maria-vincenzi/PyCoCo_templates
https://github.com/maria-vincenzi/PyCoCo_templates
https://github.com/maria-vincenzi/PyCoCo_templates
https://github.com/maria-vincenzi/PyCoCo_templates
https://github.com/maria-vincenzi/PyCoCo_templates
https://github.com/maria-vincenzi/PyCoCo_templates
https://github.com/maria-vincenzi/PyCoCo_templates
https://github.com/maria-vincenzi/PyCoCo_templates
https://github.com/maria-vincenzi/PyCoCo_templates

sncosmo Documentation, Release 2.6.0

Table 53 – continued from previous page
Name Version Type Subclass Reference Website Notes
‘v19-2009kr’ ‘1.0’ SN II TimeSeriesSource i [7]
‘v19-2010al-corr’ ‘1.0’ SN IIn TimeSeriesSource i [7]
‘v19-2010al’ ‘1.0’ SN IIn TimeSeriesSource i [7]
‘v19-2011bm-corr’ ‘1.0’ SN Ic TimeSeriesSource i [7]
‘v19-2011bm’ ‘1.0’ SN Ic TimeSeriesSource i [7]
‘v19-2011dh-corr’ ‘1.0’ SN IIb TimeSeriesSource i [7]
‘v19-2011dh’ ‘1.0’ SN IIb TimeSeriesSource i [7]
‘v19-2011ei-corr’ ‘1.0’ SN IIb TimeSeriesSource i [7]
‘v19-2011ei’ ‘1.0’ SN IIb TimeSeriesSource i [7]
‘v19-2011fu-corr’ ‘1.0’ SN IIb TimeSeriesSource i [7]
‘v19-2011fu’ ‘1.0’ SN IIb TimeSeriesSource i [7]
‘v19-2011hs-corr’ ‘1.0’ SN IIb TimeSeriesSource i [7]
‘v19-2011hs’ ‘1.0’ SN IIb TimeSeriesSource i [7]
‘v19-2011ht-corr’ ‘1.0’ SN IIn TimeSeriesSource i [7]
‘v19-2011ht’ ‘1.0’ SN IIn TimeSeriesSource i [7]
‘v19-2012a-corr’ ‘1.0’ SN II TimeSeriesSource i [7]
‘v19-2012a’ ‘1.0’ SN II TimeSeriesSource i [7]
‘v19-2012ap-corr’ ‘1.0’ SN Ic-BL TimeSeriesSource i [7]
‘v19-2012ap’ ‘1.0’ SN Ic-BL TimeSeriesSource i [7]
‘v19-2012au-corr’ ‘1.0’ SN Ib TimeSeriesSource i [7]
‘v19-2012au’ ‘1.0’ SN Ib TimeSeriesSource i [7]
‘v19-2012aw-corr’ ‘1.0’ SN II TimeSeriesSource i [7]
‘v19-2012aw’ ‘1.0’ SN II TimeSeriesSource i [7]
‘v19-2013ab-corr’ ‘1.0’ SN II TimeSeriesSource i [7]
‘v19-2013ab’ ‘1.0’ SN II TimeSeriesSource i [7]
‘v19-2013am-corr’ ‘1.0’ SN II TimeSeriesSource i [7]
‘v19-2013am’ ‘1.0’ SN II TimeSeriesSource i [7]
‘v19-2013by-corr’ ‘1.0’ SN II TimeSeriesSource i [7]
‘v19-2013by’ ‘1.0’ SN II TimeSeriesSource i [7]
‘v19-2013df-corr’ ‘1.0’ SN IIb TimeSeriesSource i [7]
‘v19-2013df’ ‘1.0’ SN IIb TimeSeriesSource i [7]
‘v19-2013ej-corr’ ‘1.0’ SN II TimeSeriesSource i [7]
‘v19-2013ej’ ‘1.0’ SN II TimeSeriesSource i [7]
‘v19-2013fs-corr’ ‘1.0’ SN II TimeSeriesSource i [7]
‘v19-2013fs’ ‘1.0’ SN II TimeSeriesSource i [7]
‘v19-2013ge-corr’ ‘1.0’ SN Ic TimeSeriesSource i [7]
‘v19-2013ge’ ‘1.0’ SN Ic TimeSeriesSource i [7]
‘v19-2014g-corr’ ‘1.0’ SN II TimeSeriesSource i [7]
‘v19-2014g’ ‘1.0’ SN II TimeSeriesSource i [7]
‘v19-2016x-corr’ ‘1.0’ SN II TimeSeriesSource i [7]
‘v19-2016x’ ‘1.0’ SN II TimeSeriesSource i [7]
‘v19-2016bkv-corr’ ‘1.0’ SN II TimeSeriesSource i [7]
‘v19-2016bkv’ ‘1.0’ SN II TimeSeriesSource i [7]
‘v19-2016gkg-corr’ ‘1.0’ SN IIb TimeSeriesSource i [7]
‘v19-2016gkg’ ‘1.0’ SN IIb TimeSeriesSource i [7]
‘v19-iptf13bvn-corr’ ‘1.0’ SN Ib TimeSeriesSource i [7]
‘v19-iptf13bvn’ ‘1.0’ SN Ib TimeSeriesSource i [7]
‘whalen-z15b’ ‘1.0’ PopIII TimeSeriesSource [Whalen13] [8]
‘whalen-z15d’ ‘1.0’ PopIII TimeSeriesSource [Whalen13] [8]

continues on next page

94 Chapter 11. Examples

https://github.com/maria-vincenzi/PyCoCo_templates
https://github.com/maria-vincenzi/PyCoCo_templates
https://github.com/maria-vincenzi/PyCoCo_templates
https://github.com/maria-vincenzi/PyCoCo_templates
https://github.com/maria-vincenzi/PyCoCo_templates
https://github.com/maria-vincenzi/PyCoCo_templates
https://github.com/maria-vincenzi/PyCoCo_templates
https://github.com/maria-vincenzi/PyCoCo_templates
https://github.com/maria-vincenzi/PyCoCo_templates
https://github.com/maria-vincenzi/PyCoCo_templates
https://github.com/maria-vincenzi/PyCoCo_templates
https://github.com/maria-vincenzi/PyCoCo_templates
https://github.com/maria-vincenzi/PyCoCo_templates
https://github.com/maria-vincenzi/PyCoCo_templates
https://github.com/maria-vincenzi/PyCoCo_templates
https://github.com/maria-vincenzi/PyCoCo_templates
https://github.com/maria-vincenzi/PyCoCo_templates
https://github.com/maria-vincenzi/PyCoCo_templates
https://github.com/maria-vincenzi/PyCoCo_templates
https://github.com/maria-vincenzi/PyCoCo_templates
https://github.com/maria-vincenzi/PyCoCo_templates
https://github.com/maria-vincenzi/PyCoCo_templates
https://github.com/maria-vincenzi/PyCoCo_templates
https://github.com/maria-vincenzi/PyCoCo_templates
https://github.com/maria-vincenzi/PyCoCo_templates
https://github.com/maria-vincenzi/PyCoCo_templates
https://github.com/maria-vincenzi/PyCoCo_templates
https://github.com/maria-vincenzi/PyCoCo_templates
https://github.com/maria-vincenzi/PyCoCo_templates
https://github.com/maria-vincenzi/PyCoCo_templates
https://github.com/maria-vincenzi/PyCoCo_templates
https://github.com/maria-vincenzi/PyCoCo_templates
https://github.com/maria-vincenzi/PyCoCo_templates
https://github.com/maria-vincenzi/PyCoCo_templates
https://github.com/maria-vincenzi/PyCoCo_templates
https://github.com/maria-vincenzi/PyCoCo_templates
https://github.com/maria-vincenzi/PyCoCo_templates
https://github.com/maria-vincenzi/PyCoCo_templates
https://github.com/maria-vincenzi/PyCoCo_templates
https://github.com/maria-vincenzi/PyCoCo_templates
https://github.com/maria-vincenzi/PyCoCo_templates
https://github.com/maria-vincenzi/PyCoCo_templates
https://github.com/maria-vincenzi/PyCoCo_templates
https://github.com/maria-vincenzi/PyCoCo_templates
https://github.com/maria-vincenzi/PyCoCo_templates
https://github.com/maria-vincenzi/PyCoCo_templates
https://github.com/maria-vincenzi/PyCoCo_templates

sncosmo Documentation, Release 2.6.0

Table 53 – continued from previous page
Name Version Type Subclass Reference Website Notes
‘whalen-z15g’ ‘1.0’ PopIII TimeSeriesSource [Whalen13] [8]
‘whalen-z25b’ ‘1.0’ PopIII TimeSeriesSource [Whalen13] [8]
‘whalen-z25d’ ‘1.0’ PopIII TimeSeriesSource [Whalen13] [8]
‘whalen-z25g’ ‘1.0’ PopIII TimeSeriesSource [Whalen13] [8]
‘whalen-z40b’ ‘1.0’ PopIII TimeSeriesSource [Whalen13] [8]
‘whalen-z40g’ ‘1.0’ PopIII TimeSeriesSource [Whalen13] [8]
‘mlcs2k2’ ‘1.0’ SN Ia MLCS2k2Source [Jha07] [9]
‘snemo2’ ‘1.0’ SN Ia SNEMOSource [Saunders18] j
‘snemo7’ ‘1.0’ SN Ia SNEMOSource [Saunders18] j
‘snemo15’ ‘1.0’ SN Ia SNEMOSource [Saunders18] j
‘sugar’ ‘1.0’ SN Ia SUGARSource [Leget20] k

11.7 List of Built-in Bandpasses

11.7.1 bessell

Name Description Data URL Retrieved Reference
‘bessellux’ Representation of Johnson-Cousins UBVRI system [B90]
‘bessellb’ Representation of Johnson-Cousins UBVRI system [B90]
‘bessellv’ Representation of Johnson-Cousins UBVRI system [B90]
‘bessellr’ Representation of Johnson-Cousins UBVRI system [B90]
‘besselli’ Representation of Johnson-Cousins UBVRI system [B90]

3000 4000 5000 6000 7000 8000 9000 10000
Wavelength (Å)

0.0

0.2

0.4

0.6

0.8

1.0

Tr
an

sm
is

si
on

bessellux
bessellb
bessellv
bessellr
besselli

11.7.2 snls3-landolt

Name Description Data URL Retrieved Reference
‘standard::u’ Bessell bandpasses shifted as in JLA analysis a 13 February 2017 [B14a]
‘standard::b’ Bessell bandpasses shifted as in JLA analysis a 13 February 2017 [B14a]
‘standard::v’ Bessell bandpasses shifted as in JLA analysis a 13 February 2017 [B14a]
‘standard::r’ Bessell bandpasses shifted as in JLA analysis a 13 February 2017 [B14a]
‘standard::i’ Bessell bandpasses shifted as in JLA analysis a 13 February 2017 [B14a]

11.7. List of Built-in Bandpasses 95

https://snfactory.lbl.gov/snemo/
https://snfactory.lbl.gov/snemo/
https://snfactory.lbl.gov/snemo/
http://supernovae.in2p3.fr/sugar_template/
http://supernovae.in2p3.fr/sdss_snls_jla/ReadMe.html
http://supernovae.in2p3.fr/sdss_snls_jla/ReadMe.html
http://supernovae.in2p3.fr/sdss_snls_jla/ReadMe.html
http://supernovae.in2p3.fr/sdss_snls_jla/ReadMe.html
http://supernovae.in2p3.fr/sdss_snls_jla/ReadMe.html

sncosmo Documentation, Release 2.6.0

3000 4000 5000 6000 7000 8000 9000 10000
Wavelength (Å)

0.0

0.2

0.4

0.6

0.8

1.0
Tr

an
sm

is
si

on
standard::u
standard::b
standard::v
standard::r
standard::i

11.7.3 des

Name Description Data URL Retrieved Reference
‘desg’ Dark Energy Camera grizy filter set at airmass 1.3 22 March 2013
‘desr’ Dark Energy Camera grizy filter set at airmass 1.3 22 March 2013
‘desi’ Dark Energy Camera grizy filter set at airmass 1.3 22 March 2013
‘desz’ Dark Energy Camera grizy filter set at airmass 1.3 22 March 2013
‘desy’ Dark Energy Camera grizy filter set at airmass 1.3 22 March 2013

4000 5000 6000 7000 8000 9000 10000 11000
Wavelength (Å)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Tr
an

sm
is

si
on

desg
desr
desi
desz
desy

96 Chapter 11. Examples

sncosmo Documentation, Release 2.6.0

11.7.4 sdss

Name Description Data
URL

Re-
trieved

Refer-
ence

‘sdssu’ SDSS 2.5m imager at airmass 1.3 (including atmosphere), nor-
malized

[D10]

‘sdssg’ SDSS 2.5m imager at airmass 1.3 (including atmosphere), nor-
malized

[D10]

‘sdssr’ SDSS 2.5m imager at airmass 1.3 (including atmosphere), nor-
malized

[D10]

‘sdssi’ SDSS 2.5m imager at airmass 1.3 (including atmosphere), nor-
malized

[D10]

‘sdssz’ SDSS 2.5m imager at airmass 1.3 (including atmosphere), nor-
malized

[D10]

4000 6000 8000 10000 12000
Wavelength (Å)

0.0

0.1

0.2

0.3

0.4

0.5

Tr
an

sm
is

si
on

sdssu
sdssg
sdssr
sdssi
sdssz

11.7.5 acs

Name Description Data URL Retrieved Reference
‘f435w’ Hubble Space Telescope ACS WFC filters b direct download
‘f475w’ Hubble Space Telescope ACS WFC filters b direct download
‘f555w’ Hubble Space Telescope ACS WFC filters b direct download
‘f606w’ Hubble Space Telescope ACS WFC filters b direct download
‘f625w’ Hubble Space Telescope ACS WFC filters b direct download
‘f775w’ Hubble Space Telescope ACS WFC filters b direct download
‘f850lp’ Hubble Space Telescope ACS WFC filters b direct download

11.7. List of Built-in Bandpasses 97

http://www.stsci.edu/hst/acs/analysis/throughputs
http://www.stsci.edu/hst/acs/analysis/throughputs
http://www.stsci.edu/hst/acs/analysis/throughputs
http://www.stsci.edu/hst/acs/analysis/throughputs
http://www.stsci.edu/hst/acs/analysis/throughputs
http://www.stsci.edu/hst/acs/analysis/throughputs
http://www.stsci.edu/hst/acs/analysis/throughputs

sncosmo Documentation, Release 2.6.0

4000 6000 8000 10000 12000
Wavelength (Å)

0.0

0.1

0.2

0.3

0.4

0.5
Tr

an
sm

is
si

on
f435w
f475w
f555w
f606w
f625w
f775w
f850lp

11.7.6 nicmos-nic2

Name Description Data URL Retrieved Reference
‘nicf110w’ Hubble Space Telescope NICMOS2 filters c 05 Aug 2014
‘nicf160w’ Hubble Space Telescope NICMOS2 filters c 05 Aug 2014

8000 10000 12000 14000 16000 18000 20000
Wavelength (Å)

0.00

0.05

0.10

0.15

Tr
an

sm
is

si
on

nicf110w
nicf160w

11.7.7 wfc3-ir

Name Description Data URL Retrieved Reference
‘f098m’ Hubble Space Telescope WFC3 IR filters d direct download
‘f105w’ Hubble Space Telescope WFC3 IR filters d direct download
‘f110w’ Hubble Space Telescope WFC3 IR filters d direct download
‘f125w’ Hubble Space Telescope WFC3 IR filters d direct download
‘f127m’ Hubble Space Telescope WFC3 IR filters d direct download
‘f139m’ Hubble Space Telescope WFC3 IR filters d direct download
‘f140w’ Hubble Space Telescope WFC3 IR filters d direct download
‘f153m’ Hubble Space Telescope WFC3 IR filters d direct download
‘f160w’ Hubble Space Telescope WFC3 IR filters d direct download

98 Chapter 11. Examples

http://www.stsci.edu/hst/
http://www.stsci.edu/hst/
http://www.stsci.edu/hst/wfc3/ins_performance/throughputs/Throughput_Tables
http://www.stsci.edu/hst/wfc3/ins_performance/throughputs/Throughput_Tables
http://www.stsci.edu/hst/wfc3/ins_performance/throughputs/Throughput_Tables
http://www.stsci.edu/hst/wfc3/ins_performance/throughputs/Throughput_Tables
http://www.stsci.edu/hst/wfc3/ins_performance/throughputs/Throughput_Tables
http://www.stsci.edu/hst/wfc3/ins_performance/throughputs/Throughput_Tables
http://www.stsci.edu/hst/wfc3/ins_performance/throughputs/Throughput_Tables
http://www.stsci.edu/hst/wfc3/ins_performance/throughputs/Throughput_Tables
http://www.stsci.edu/hst/wfc3/ins_performance/throughputs/Throughput_Tables

sncosmo Documentation, Release 2.6.0

10000 12000 14000 16000 18000
Wavelength (Å)

0.0

0.1

0.2

0.3

0.4

0.5

Tr
an

sm
is

si
on

f098m
f105w
f110w
f125w
f127m
f139m
f140w
f153m
f160w

11.7. List of Built-in Bandpasses 99

sncosmo Documentation, Release 2.6.0

11.7.8 wfc3-uvis

Name Description Data URL Retrieved Refer-
ence

‘f218w’ Hubble Space Telescope WFC3 UVIS filters (CCD 2) d direct down-
load

‘f225w’ Hubble Space Telescope WFC3 UVIS filters (CCD 2) d direct down-
load

‘f275w’ Hubble Space Telescope WFC3 UVIS filters (CCD 2) d direct down-
load

‘f300x’ Hubble Space Telescope WFC3 UVIS filters (CCD 2) d direct down-
load

‘f336w’ Hubble Space Telescope WFC3 UVIS filters (CCD 2) d direct down-
load

‘f350lp’ Hubble Space Telescope WFC3 UVIS filters (CCD 2) d direct down-
load

‘f390w’ Hubble Space Telescope WFC3 UVIS filters (CCD 2) d direct down-
load

‘f689m’ Hubble Space Telescope WFC3 UVIS filters (CCD 2) d direct down-
load

‘f763m’ Hubble Space Telescope WFC3 UVIS filters (CCD 2) d direct down-
load

‘f845m’ Hubble Space Telescope WFC3 UVIS filters (CCD 2) d direct down-
load

‘f438w’ Hubble Space Telescope WFC3 UVIS filters (CCD 2) d direct down-
load

‘uvf475w’ Hubble Space Telescope WFC3 UVIS filters (CCD 2) d direct down-
load

‘uvf555w’ Hubble Space Telescope WFC3 UVIS filters (CCD 2) d direct down-
load

‘uvf606w’ Hubble Space Telescope WFC3 UVIS filters (CCD 2) d direct down-
load

‘uvf625w’ Hubble Space Telescope WFC3 UVIS filters (CCD 2) d direct down-
load

‘uvf775w’ Hubble Space Telescope WFC3 UVIS filters (CCD 2) d direct down-
load

‘uvf814w’ Hubble Space Telescope WFC3 UVIS filters (CCD 2) d direct down-
load

‘uvf850lp’ Hubble Space Telescope WFC3 UVIS filters (CCD 2) d direct down-
load

11.7.9 kepler

Name Description Data URL Retrieved Reference
‘kepler’ Bandpass for the Kepler spacecraft e direct download

100 Chapter 11. Examples

http://www.stsci.edu/hst/wfc3/ins_performance/throughputs/Throughput_Tables
http://www.stsci.edu/hst/wfc3/ins_performance/throughputs/Throughput_Tables
http://www.stsci.edu/hst/wfc3/ins_performance/throughputs/Throughput_Tables
http://www.stsci.edu/hst/wfc3/ins_performance/throughputs/Throughput_Tables
http://www.stsci.edu/hst/wfc3/ins_performance/throughputs/Throughput_Tables
http://www.stsci.edu/hst/wfc3/ins_performance/throughputs/Throughput_Tables
http://www.stsci.edu/hst/wfc3/ins_performance/throughputs/Throughput_Tables
http://www.stsci.edu/hst/wfc3/ins_performance/throughputs/Throughput_Tables
http://www.stsci.edu/hst/wfc3/ins_performance/throughputs/Throughput_Tables
http://www.stsci.edu/hst/wfc3/ins_performance/throughputs/Throughput_Tables
http://www.stsci.edu/hst/wfc3/ins_performance/throughputs/Throughput_Tables
http://www.stsci.edu/hst/wfc3/ins_performance/throughputs/Throughput_Tables
http://www.stsci.edu/hst/wfc3/ins_performance/throughputs/Throughput_Tables
http://www.stsci.edu/hst/wfc3/ins_performance/throughputs/Throughput_Tables
http://www.stsci.edu/hst/wfc3/ins_performance/throughputs/Throughput_Tables
http://www.stsci.edu/hst/wfc3/ins_performance/throughputs/Throughput_Tables
http://www.stsci.edu/hst/wfc3/ins_performance/throughputs/Throughput_Tables
http://www.stsci.edu/hst/wfc3/ins_performance/throughputs/Throughput_Tables
http://keplergo.arc.nasa.gov/CalibrationResponse.shtml

sncosmo Documentation, Release 2.6.0

2000 4000 6000 8000 10000 12000
Wavelength (Å)

0.00

0.05

0.10

0.15

0.20

0.25

0.30
Tr

an
sm

is
si

on
f218w
f225w
f275w
f300x
f336w
f350lp
f390w
f689m
f763m

f845m
f438w
uvf475w
uvf555w
uvf606w
uvf625w
uvf775w
uvf814w
uvf850lp

4000 5000 6000 7000 8000 9000 10000
Wavelength (Å)

0.0

0.2

0.4

0.6

Tr
an

sm
is

si
on

kepler

11.7. List of Built-in Bandpasses 101

sncosmo Documentation, Release 2.6.0

11.7.10 csp

Name Description Data
URL

Re-
trieved

Refer-
ence

‘cspb’ Carnegie Supernova Project filters (Swope+DuPont Telescopes)
updated 6 Oct 2016

f 8 Feb
2017

‘csphs’ Carnegie Supernova Project filters (Swope+DuPont Telescopes)
updated 6 Oct 2016

f 8 Feb
2017

‘csphd’ Carnegie Supernova Project filters (Swope+DuPont Telescopes)
updated 6 Oct 2016

f 8 Feb
2017

‘cspjs’ Carnegie Supernova Project filters (Swope+DuPont Telescopes)
updated 6 Oct 2016

f 8 Feb
2017

‘cspjd’ Carnegie Supernova Project filters (Swope+DuPont Telescopes)
updated 6 Oct 2016

f 8 Feb
2017

‘cspv3009’ Carnegie Supernova Project filters (Swope+DuPont Telescopes)
updated 6 Oct 2016

f 8 Feb
2017

‘cspv3014’ Carnegie Supernova Project filters (Swope+DuPont Telescopes)
updated 6 Oct 2016

f 8 Feb
2017

‘cspv9844’ Carnegie Supernova Project filters (Swope+DuPont Telescopes)
updated 6 Oct 2016

f 8 Feb
2017

‘cspys’ Carnegie Supernova Project filters (Swope+DuPont Telescopes)
updated 6 Oct 2016

f 8 Feb
2017

‘cspyd’ Carnegie Supernova Project filters (Swope+DuPont Telescopes)
updated 6 Oct 2016

f 8 Feb
2017

‘cspg’ Carnegie Supernova Project filters (Swope+DuPont Telescopes)
updated 6 Oct 2016

f 8 Feb
2017

‘cspi’ Carnegie Supernova Project filters (Swope+DuPont Telescopes)
updated 6 Oct 2016

f 8 Feb
2017

‘cspk’ Carnegie Supernova Project filters (Swope+DuPont Telescopes)
updated 6 Oct 2016

f 8 Feb
2017

‘cspr’ Carnegie Supernova Project filters (Swope+DuPont Telescopes)
updated 6 Oct 2016

f 8 Feb
2017

‘cspu’ Carnegie Supernova Project filters (Swope+DuPont Telescopes)
updated 6 Oct 2016

f 8 Feb
2017

5000 10000 15000 20000 25000 30000
Wavelength (Å)

0.0

0.2

0.4

0.6

0.8

1.0

Tr
an

sm
is

si
on

cspb
csphs
csphd
cspjs
cspjd
cspv3009
cspv3014
cspv9844

cspys
cspyd
cspg
cspi
cspk
cspr
cspu

102 Chapter 11. Examples

http://csp.obs.carnegiescience.edu/data/filters
http://csp.obs.carnegiescience.edu/data/filters
http://csp.obs.carnegiescience.edu/data/filters
http://csp.obs.carnegiescience.edu/data/filters
http://csp.obs.carnegiescience.edu/data/filters
http://csp.obs.carnegiescience.edu/data/filters
http://csp.obs.carnegiescience.edu/data/filters
http://csp.obs.carnegiescience.edu/data/filters
http://csp.obs.carnegiescience.edu/data/filters
http://csp.obs.carnegiescience.edu/data/filters
http://csp.obs.carnegiescience.edu/data/filters
http://csp.obs.carnegiescience.edu/data/filters
http://csp.obs.carnegiescience.edu/data/filters
http://csp.obs.carnegiescience.edu/data/filters
http://csp.obs.carnegiescience.edu/data/filters

sncosmo Documentation, Release 2.6.0

11.7.11 jwst-nircam

Name Description Data
URL

Retrieved Refer-
ence

‘f070w’ James Webb Space Telescope NIRCAM Wide+Medium fil-
ters

g 09 Sep
2014

‘f090w’ James Webb Space Telescope NIRCAM Wide+Medium fil-
ters

g 09 Sep
2014

‘f115w’ James Webb Space Telescope NIRCAM Wide+Medium fil-
ters

g 09 Sep
2014

‘f150w’ James Webb Space Telescope NIRCAM Wide+Medium fil-
ters

g 09 Sep
2014

‘f200w’ James Webb Space Telescope NIRCAM Wide+Medium fil-
ters

g 09 Sep
2014

‘f277w’ James Webb Space Telescope NIRCAM Wide+Medium fil-
ters

g 09 Sep
2014

‘f356w’ James Webb Space Telescope NIRCAM Wide+Medium fil-
ters

g 09 Sep
2014

‘f444w’ James Webb Space Telescope NIRCAM Wide+Medium fil-
ters

g 09 Sep
2014

‘f140m’ James Webb Space Telescope NIRCAM Wide+Medium fil-
ters

g 09 Sep
2014

‘f162m’ James Webb Space Telescope NIRCAM Wide+Medium fil-
ters

g 09 Sep
2014

‘f182m’ James Webb Space Telescope NIRCAM Wide+Medium fil-
ters

g 09 Sep
2014

‘f210m’ James Webb Space Telescope NIRCAM Wide+Medium fil-
ters

g 09 Sep
2014

‘f250m’ James Webb Space Telescope NIRCAM Wide+Medium fil-
ters

g 09 Sep
2014

‘f300m’ James Webb Space Telescope NIRCAM Wide+Medium fil-
ters

g 09 Sep
2014

‘f335m’ James Webb Space Telescope NIRCAM Wide+Medium fil-
ters

g 09 Sep
2014

‘f360m’ James Webb Space Telescope NIRCAM Wide+Medium fil-
ters

g 09 Sep
2014

‘f410m’ James Webb Space Telescope NIRCAM Wide+Medium fil-
ters

g 09 Sep
2014

‘f430m’ James Webb Space Telescope NIRCAM Wide+Medium fil-
ters

g 09 Sep
2014

‘f460m’ James Webb Space Telescope NIRCAM Wide+Medium fil-
ters

g 09 Sep
2014

‘f480m’ James Webb Space Telescope NIRCAM Wide+Medium fil-
ters

g 09 Sep
2014

11.7. List of Built-in Bandpasses 103

http://www.stsci.edu/jwst/instruments/nircam/instrumentdesign/filters
http://www.stsci.edu/jwst/instruments/nircam/instrumentdesign/filters
http://www.stsci.edu/jwst/instruments/nircam/instrumentdesign/filters
http://www.stsci.edu/jwst/instruments/nircam/instrumentdesign/filters
http://www.stsci.edu/jwst/instruments/nircam/instrumentdesign/filters
http://www.stsci.edu/jwst/instruments/nircam/instrumentdesign/filters
http://www.stsci.edu/jwst/instruments/nircam/instrumentdesign/filters
http://www.stsci.edu/jwst/instruments/nircam/instrumentdesign/filters
http://www.stsci.edu/jwst/instruments/nircam/instrumentdesign/filters
http://www.stsci.edu/jwst/instruments/nircam/instrumentdesign/filters
http://www.stsci.edu/jwst/instruments/nircam/instrumentdesign/filters
http://www.stsci.edu/jwst/instruments/nircam/instrumentdesign/filters
http://www.stsci.edu/jwst/instruments/nircam/instrumentdesign/filters
http://www.stsci.edu/jwst/instruments/nircam/instrumentdesign/filters
http://www.stsci.edu/jwst/instruments/nircam/instrumentdesign/filters
http://www.stsci.edu/jwst/instruments/nircam/instrumentdesign/filters
http://www.stsci.edu/jwst/instruments/nircam/instrumentdesign/filters
http://www.stsci.edu/jwst/instruments/nircam/instrumentdesign/filters
http://www.stsci.edu/jwst/instruments/nircam/instrumentdesign/filters
http://www.stsci.edu/jwst/instruments/nircam/instrumentdesign/filters

sncosmo Documentation, Release 2.6.0

10000 20000 30000 40000 50000 60000 70000
Wavelength (Å)

0.0

0.2

0.4

0.6

0.8

1.0
Tr

an
sm

is
si

on
f070w
f090w
f115w
f150w
f200w
f277w
f356w

f444w
f140m
f162m
f182m
f210m
f250m
f300m

f335m
f360m
f410m
f430m
f460m
f480m

11.7.12 jwst-miri

Name Description Data URL Retrieved Reference
‘f560w’ James Webb Space Telescope MIRI filters h 16 Feb 2017
‘f770w’ James Webb Space Telescope MIRI filters h 16 Feb 2017
‘f1000w’ James Webb Space Telescope MIRI filters h 16 Feb 2017
‘f1130w’ James Webb Space Telescope MIRI filters h 16 Feb 2017
‘f1280w’ James Webb Space Telescope MIRI filters h 16 Feb 2017
‘f1500w’ James Webb Space Telescope MIRI filters h 16 Feb 2017
‘f1800w’ James Webb Space Telescope MIRI filters h 16 Feb 2017
‘f2100w’ James Webb Space Telescope MIRI filters h 16 Feb 2017
‘f2550w’ James Webb Space Telescope MIRI filters h 16 Feb 2017

50000 100000 150000 200000 250000 300000
Wavelength (Å)

0.0

0.1

0.2

0.3

0.4

Tr
an

sm
is

si
on

f560w
f770w
f1000w
f1130w
f1280w
f1500w
f1800w
f2100w
f2550w

104 Chapter 11. Examples

http://ircamera.as.arizona.edu/MIRI/ImPCE_TN-00072-ATC-Iss2.xlsx
http://ircamera.as.arizona.edu/MIRI/ImPCE_TN-00072-ATC-Iss2.xlsx
http://ircamera.as.arizona.edu/MIRI/ImPCE_TN-00072-ATC-Iss2.xlsx
http://ircamera.as.arizona.edu/MIRI/ImPCE_TN-00072-ATC-Iss2.xlsx
http://ircamera.as.arizona.edu/MIRI/ImPCE_TN-00072-ATC-Iss2.xlsx
http://ircamera.as.arizona.edu/MIRI/ImPCE_TN-00072-ATC-Iss2.xlsx
http://ircamera.as.arizona.edu/MIRI/ImPCE_TN-00072-ATC-Iss2.xlsx
http://ircamera.as.arizona.edu/MIRI/ImPCE_TN-00072-ATC-Iss2.xlsx
http://ircamera.as.arizona.edu/MIRI/ImPCE_TN-00072-ATC-Iss2.xlsx

sncosmo Documentation, Release 2.6.0

11.7.13 jwst-miri-tophat

Name Description Data URL Retrieved Refer-
ence

‘f1065c’ James Webb Space Telescope MIRI filters (idealized tophat) i 09 Sep 2014
‘f1140c’ James Webb Space Telescope MIRI filters (idealized tophat) i 09 Sep 2014
‘f1550c’ James Webb Space Telescope MIRI filters (idealized tophat) i 09 Sep 2014
‘f2300c’ James Webb Space Telescope MIRI filters (idealized tophat) i 09 Sep 2014

100000 125000 150000 175000 200000 225000 250000 275000
Wavelength (Å)

0.0

0.2

0.4

0.6

0.8

1.0

Tr
an

sm
is

si
on

f1065c
f1140c
f1550c
f2300c

11.7.14 lsst

Name Description Data URL Retrieved Reference
‘lsstu’ LSST baseline total throughputs, v1.1. j 16 Nov 2016
‘lsstg’ LSST baseline total throughputs, v1.1. j 16 Nov 2016
‘lsstr’ LSST baseline total throughputs, v1.1. j 16 Nov 2016
‘lssti’ LSST baseline total throughputs, v1.1. j 16 Nov 2016
‘lsstz’ LSST baseline total throughputs, v1.1. j 16 Nov 2016
‘lssty’ LSST baseline total throughputs, v1.1. j 16 Nov 2016

4000 6000 8000 10000 12000
Wavelength (Å)

0.0

0.1

0.2

0.3

0.4

Tr
an

sm
is

si
on

lsstu
lsstg
lsstr
lssti
lsstz
lssty

11.7. List of Built-in Bandpasses 105

http://www.stsci.edu/jwst/instruments/miri/instrumentdesign/filters
http://www.stsci.edu/jwst/instruments/miri/instrumentdesign/filters
http://www.stsci.edu/jwst/instruments/miri/instrumentdesign/filters
http://www.stsci.edu/jwst/instruments/miri/instrumentdesign/filters
https://github.com/lsst/throughputs/tree/7632edaa9e93d06576e34a065ea4622de8cc48d0/baseline
https://github.com/lsst/throughputs/tree/7632edaa9e93d06576e34a065ea4622de8cc48d0/baseline
https://github.com/lsst/throughputs/tree/7632edaa9e93d06576e34a065ea4622de8cc48d0/baseline
https://github.com/lsst/throughputs/tree/7632edaa9e93d06576e34a065ea4622de8cc48d0/baseline
https://github.com/lsst/throughputs/tree/7632edaa9e93d06576e34a065ea4622de8cc48d0/baseline
https://github.com/lsst/throughputs/tree/7632edaa9e93d06576e34a065ea4622de8cc48d0/baseline

sncosmo Documentation, Release 2.6.0

11.7.15 keplercam

Name Description Data URL Retrieved Reference
‘keplercam::us’ Keplercam transmissions as used in JLA a 13 Feb 2017
‘keplercam::b’ Keplercam transmissions as used in JLA a 13 Feb 2017
‘keplercam::v’ Keplercam transmissions as used in JLA a 13 Feb 2017
‘keplercam::r’ Keplercam transmissions as used in JLA a 13 Feb 2017
‘keplercam::i’ Keplercam transmissions as used in JLA a 13 Feb 2017

3000 4000 5000 6000 7000 8000 9000 10000
Wavelength (Å)

0.0

0.2

0.4

0.6

0.8

1.0

Tr
an

sm
is

si
on

keplercam::us
keplercam::b
keplercam::v
keplercam::r
keplercam::i

11.7.16 4shooter2

Name Description Data URL Retrieved Reference
‘4shooter2::us’ 4Shooter filters as used in JLA a 13 Feb 2017
‘4shooter2::b’ 4Shooter filters as used in JLA a 13 Feb 2017
‘4shooter2::v’ 4Shooter filters as used in JLA a 13 Feb 2017
‘4shooter2::r’ 4Shooter filters as used in JLA a 13 Feb 2017
‘4shooter2::i’ 4Shooter filters as used in JLA a 13 Feb 2017

3000 4000 5000 6000 7000 8000 9000 10000
Wavelength (Å)

0.0

0.2

0.4

0.6

0.8

1.0

Tr
an

sm
is

si
on

4shooter2::us
4shooter2::b
4shooter2::v
4shooter2::r
4shooter2::i

106 Chapter 11. Examples

http://supernovae.in2p3.fr/sdss_snls_jla/ReadMe.html
http://supernovae.in2p3.fr/sdss_snls_jla/ReadMe.html
http://supernovae.in2p3.fr/sdss_snls_jla/ReadMe.html
http://supernovae.in2p3.fr/sdss_snls_jla/ReadMe.html
http://supernovae.in2p3.fr/sdss_snls_jla/ReadMe.html
http://supernovae.in2p3.fr/sdss_snls_jla/ReadMe.html
http://supernovae.in2p3.fr/sdss_snls_jla/ReadMe.html
http://supernovae.in2p3.fr/sdss_snls_jla/ReadMe.html
http://supernovae.in2p3.fr/sdss_snls_jla/ReadMe.html
http://supernovae.in2p3.fr/sdss_snls_jla/ReadMe.html

sncosmo Documentation, Release 2.6.0

11.7.17 roman-wfi

Name Description Data URL Retrieved Refer-
ence

‘f062’ Roman filters from Jeff Kruk: Roman_effarea_20201130.txt k 30 Nov 2020
‘f087’ Roman filters from Jeff Kruk: Roman_effarea_20201130.txt k 30 Nov 2020
‘f106’ Roman filters from Jeff Kruk: Roman_effarea_20201130.txt k 30 Nov 2020
‘f129’ Roman filters from Jeff Kruk: Roman_effarea_20201130.txt k 30 Nov 2020
‘f158’ Roman filters from Jeff Kruk: Roman_effarea_20201130.txt k 30 Nov 2020
‘f184’ Roman filters from Jeff Kruk: Roman_effarea_20201130.txt k 30 Nov 2020
‘f213’ Roman filters from Jeff Kruk: Roman_effarea_20201130.txt k 30 Nov 2020
‘f146’ Roman filters from Jeff Kruk: Roman_effarea_20201130.txt k 30 Nov 2020

5000 10000 15000 20000 25000
Wavelength (Å)

0.0

0.2

0.4

0.6

Tr
an

sm
is

si
on

f062
f087
f106
f129
f158
f184
f213
f146

11.7.18 ztf

Name Description Data URL Retrieved Reference
‘ztfg’ ZTF filters from Uli Feindt. No atmospheric correction. 7 Jun 2018
‘ztfr’ ZTF filters from Uli Feindt. No atmospheric correction. 7 Jun 2018
‘ztfi’ ZTF filters from Uli Feindt. No atmospheric correction. 7 Jun 2018

4000 5000 6000 7000 8000 9000
Wavelength (Å)

0.0

0.2

0.4

0.6

0.8

Tr
an

sm
is

si
on

ztfg
ztfr
ztfi

11.7. List of Built-in Bandpasses 107

https://roman.gsfc.nasa.gov/science/WFI_technical.html
https://roman.gsfc.nasa.gov/science/WFI_technical.html
https://roman.gsfc.nasa.gov/science/WFI_technical.html
https://roman.gsfc.nasa.gov/science/WFI_technical.html
https://roman.gsfc.nasa.gov/science/WFI_technical.html
https://roman.gsfc.nasa.gov/science/WFI_technical.html
https://roman.gsfc.nasa.gov/science/WFI_technical.html
https://roman.gsfc.nasa.gov/science/WFI_technical.html

sncosmo Documentation, Release 2.6.0

11.7.19 swift-uvot

Name Description Data
URL

Re-
trieved

Refer-
ence

‘uvot::b’ Swift UVOT filters retreieved from the Spanish Virtual Observa-
tory filter profile service.

19 May
2020

‘uvot::u’ Swift UVOT filters retreieved from the Spanish Virtual Observa-
tory filter profile service.

19 May
2020

‘uvot::uvm2’Swift UVOT filters retreieved from the Spanish Virtual Observa-
tory filter profile service.

19 May
2020

‘uvot::uvw1’Swift UVOT filters retreieved from the Spanish Virtual Observa-
tory filter profile service.

19 May
2020

‘uvot::uvw2’Swift UVOT filters retreieved from the Spanish Virtual Observa-
tory filter profile service.

19 May
2020

‘uvot::v’ Swift UVOT filters retreieved from the Spanish Virtual Observa-
tory filter profile service.

19 May
2020

‘uvot::white’Swift UVOT filters retreieved from the Spanish Virtual Observa-
tory filter profile service.

19 May
2020

2000 3000 4000 5000 6000 7000 8000 9000
Wavelength (Å)

0

10

20

30

40

50

Tr
an

sm
is

si
on

uvot::b
uvot::u
uvot::uvm2
uvot::uvw1
uvot::uvw2
uvot::v
uvot::white

11.7.20 ps1

Name Description Data URL Retrieved Reference
‘ps1::open’ Pan-STARRS1 filters at airmass 1.2 l 17 Aug 2021 [T12]
‘ps1::g’ Pan-STARRS1 filters at airmass 1.2 l 17 Aug 2021 [T12]
‘ps1::r’ Pan-STARRS1 filters at airmass 1.2 l 17 Aug 2021 [T12]
‘ps1::i’ Pan-STARRS1 filters at airmass 1.2 l 17 Aug 2021 [T12]
‘ps1::z’ Pan-STARRS1 filters at airmass 1.2 l 17 Aug 2021 [T12]
‘ps1::y’ Pan-STARRS1 filters at airmass 1.2 l 17 Aug 2021 [T12]
‘ps1::w’ Pan-STARRS1 filters at airmass 1.2 l 17 Aug 2021 [T12]

108 Chapter 11. Examples

https://ipp.ifa.hawaii.edu/ps1.filters/
https://ipp.ifa.hawaii.edu/ps1.filters/
https://ipp.ifa.hawaii.edu/ps1.filters/
https://ipp.ifa.hawaii.edu/ps1.filters/
https://ipp.ifa.hawaii.edu/ps1.filters/
https://ipp.ifa.hawaii.edu/ps1.filters/
https://ipp.ifa.hawaii.edu/ps1.filters/

sncosmo Documentation, Release 2.6.0

4000 5000 6000 7000 8000 9000 10000 11000 12000
Wavelength (Å)

0.0

0.2

0.4

0.6

0.8

Tr
an

sm
is

si
on

ps1::open
ps1::g
ps1::r
ps1::i
ps1::z
ps1::y
ps1::w

11.7.21 megacampsf

These are radially-variable bandpasses. To get a Bandpass at a given radius, use band = sncosmo.
get_bandpass('megacampsf::g', 13.0)

11.8 List of Built-in Magnitude Systems

Name Description Subclass Spectrum
Source

‘jla1’ JLA1 magnitude system based on BD+17 STIS v003 spec-
trum

CompositeMagSystem a

‘ab’ Source of 3631 Jy has magnitude 0 in all bands ABMagSystem
‘vega’ Vega (alpha lyrae) has magnitude 0 in all bands. SpectralMagSystem b
‘bd17’ BD+17d4708 has magnitude 0 in all bands. SpectralMagSystem b
‘csp’ Carnegie Supernova Project magnitude system. CompositeMagSystem c
‘ab-
b12’

Betoule et al (2012) calibration of SDSS system. CompositeMagSystem a

11.8. List of Built-in Magnitude Systems 109

http://supernovae.in2p3.fr/sdss_snls_jla/ReadMe.html
ftp://ftp.stsci.edu/cdbs/calspec/
ftp://ftp.stsci.edu/cdbs/calspec/
http://csp.obs.carnegiescience.edu/data/filters
http://supernovae.in2p3.fr/sdss_snls_jla/ReadMe.html

sncosmo Documentation, Release 2.6.0

0.0

0.1

0.2

0.3

Tr
an

sm
iss

io
n

megacampsf::u radius = 0.0cm
radius = 21.0cm

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Tr
an

sm
iss

io
n

megacampsf::g radius = 0.0cm
radius = 21.0cm

0.0

0.1

0.2

0.3

0.4

0.5

Tr
an

sm
iss

io
n

megacampsf::r radius = 0.0cm
radius = 21.0cm

0.0

0.1

0.2

0.3

0.4

0.5

Tr
an

sm
iss

io
n

megacampsf::i radius = 0.0cm
radius = 21.0cm

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Tr
an

sm
iss

io
n

megacampsf::z radius = 0.0cm
radius = 21.0cm

3000 4000 5000 6000 7000 8000 9000 10000
Wavelength (Å)

0.0

0.1

0.2

0.3

0.4

0.5

Tr
an

sm
iss

io
n

megacampsf::y radius = 0.0cm
radius = 18.0cm

110 Chapter 11. Examples

CHAPTER

TWELVE

REFERENCE / API

111

sncosmo Documentation, Release 2.6.0

112 Chapter 12. Reference / API

CHAPTER

THIRTEEN

MORE. . .

13.1 Version History

Note: SNCosmo uses Semantic Versioning for its version numbers. Specifically, this means that code written for
sncosmo v1.0 will continue to work with any v1.x version. However, exact results may differ between versions in the
1.x series. (For example, due to changes in integration method.)

13.1.1 v2.6.0 (2021-09-09)

This release mostly involves modernizing the SNCosmo build system.

• Add Pan-STARRS1 bandpasses (#212)

• Added support for wheels which should now be automatically uploaded to PyPI for any new release (#304).

• Fixed the Zenodo integration. New SNCosmo releases should now automatically be archived to Zenodo.

• Moved citations to the new CITATION.cff format. GitHub and Zenodo will now provide BibTeX entries that
can be used to cite SNCosmo (#302).

• Update to the emcee version 3 API. Now only compatible with emcee>=3.

• Migrate from Travis CI to GitHub Actions for continuous integration/tests (#293).

• Bugfixes:

– Fixed the implementation of the SALT3 error model (#300).

– Fixed numpy type deprecations.

– Fixed the documentation for models (#299).

13.1.2 v2.5.0 (2021-04-20)

• Add SALT3 model from Kenworthy et al. (2021)

• Various documentation fixes

113

http://semver.org

sncosmo Documentation, Release 2.6.0

13.1.3 v2.4.0 (2021-03-05)

• Add SUGAR model from Leget et al. (2020)

• Add support for the iminuit 2.0 API (#291).

• Update tox to work with any version of Python 3.

• Bugfixes:

– Fix flatten_result bug due to API change (#285).

13.1.4 v2.3.0 (2020-11-16)

• Add Swift UVOT bandpasses.

• Bugfixes:

– Fix segfaults in bicubic interpolation.

13.1.5 v2.2.0 (2020-10-23)

• Add core-collapse models from Vincenzi et al. (2019)

• New Spectrum class to handle processing and fitting spectral observations.

• Removed appveyor builds.

• Bugfixes:

– Prevent segfaults in light curve fitting when the minuit fit fails.

13.1.6 v2.1.0 (2020-02-25)

• Add ZTF transmission functions

• Bugfixes

– Corrected pyproject.toml; should help cases where the wrong numpy version was being installed.

– Remove all references to the six package

– Fix accidental mutation of bounds inputs in fit_lc and mcmc_lc.

13.1.7 v2.0.0 (2019-06-08)

This version is the same as v1.8, with the exception that Python 2 support has been removed, and deprecated functions
and attributes have been removed. These were deprecated in v1.5.0 (released April 2017) or before.

On Python 2, pip should automatically install sncosmo v1.8 still. If not, specify sncosmo<2.0.0.

Minor changes:

• The salt2-h17 source model has been renamed to salt2-extended-h17 to make clearer its relation to
salt2-extended. It is still available under the old name for backwards compatibility.

114 Chapter 13. More. . .

sncosmo Documentation, Release 2.6.0

13.1.8 v1.8.2 (2019-06-08)

• Fix bug in download location of snana-* models latest versions, introduced in v1.8.0.

13.1.9 v1.8.1 (2019-06-08)

• Fix bug in download location of salt2-extended model latest version, introduced in v1.8.0.

13.1.10 v1.8.0 (2019-05-25)

• Add version 2.0 of many snana-... built-in core-collapse models, based on Pierel et al. 2018 (pull request
229).

• Bugfixes:

– Fix compatibility with scipy 1.3+ by removing outdated import statements (pull request 238).

– Fix issue affecting optimization of models with free propagation effects (pull request 236).

13.1.11 v1.7.0 (2019-02-02)

• Add SNEMO2, SNEMO7, SNEMO15 source models from Saunders et al. (2018) to built-ins.

13.1.12 v1.6.0 (2018-04-27)

• Add Hounsell et al. (2017) SALT2 model to built-ins.

• Add remote_timeout configuration option.

• Build system: remove build-time dependency on astropy helpers.

• Bugfixes:

– Correctly delete empty files created when a download fails.

– Use pseudo-inverse when inverting covariance matrix for increased stability.

– Fix an issue with pickling on Cython 0.26+.

– Fixed problem where data['fluxcov'] was unintentionally being modified in-place when passed to
fit_lc.

– Fixed problem where 'fluxcov' not recognized as a valid name for covariance column in data in fit_lc.

13.1.13 v1.5.0 (2017-04-20)

This is a major new release. The highlight is really close compatibility of the SALT2 model and fitting procedure with
snfit, the “official” SALT2 fitter.

• SALT2Source: Internal interpolation scheme of SALT2Source updated to match snfit implementation exactly.
Test suite now tests against snfit implementation.

• fit_lc():

– Handling of model covariance updated to match that of snfit: model covariance is fixed for each fit and
fit is repeated until convergence.

13.1. Version History 115

sncosmo Documentation, Release 2.6.0

– New arguments phase_range and wave_range. If given, data outside this range will be discarded after
an initial fit and additional fits will be performed until convergence. With phase_range=(-15., 45.)
and wave_range=(3000., 7000.), behavior approximates that of snfit with default arguments.

– Added support for covariance in photometric data measurements, and this covariance is used in fit_lc()
if present. Covariance is stored as a 'fluxcov' column in the table of measurements.

– Result includes two new attributes: data_mask, a boolean array indicating which rows in the input data
were used in the final fit (since multiple fits might be performed), and nfit, the number of fits performed.

– New argument warn can be set to False to turn off warnings about dropping bands outside model wavelength
range.

• read_lc():

– Added support for reading snfit-format “covmat” files into a table of photometry:

>>> data = read_lc('filename', format='salt2', read_covmat=True)
>>> data['Fluxcov'].shape == (len(data), len(data))
True

– New keyword argument expand_bands. When True, the returned band column will contain Bandpass
objects instead of strings. (Strings converted to bandpass objects using sncosmo.get_bandpass().) This
is particularly useful for position-dependent bandpasses in the salt2 file format, such as megacampsf:
read_lc() reads the position from the header and feeds the position to get_bandpass() to get a Bandpass
object for the correct position.

• Built-in bandpasses and magnitude systems: Many new built-in bandpasses and magnitude systems.

• Configuration: The environment variable SNCOSMO_DATA_DIR can be used to set the path to the data directory.
If set, it takes precedence over the data_dir variable in the configuration file ($HOME/.astropy/config/
sncosmo.cfg).

13.1.14 v1.4.0 (2016-11-16)

• SFD98Map and get_ebv_from_map deprecated in favor of separate package sfdmap which has vastly improved
performance (200x faster) for the typical case of scalar coordinates in ICRS frame.

• animate_source() deprecated. This is a “fun extra” that is difficult to test and no longer seems to work.

• Cython implementation of extinction functions has been factored out into a separate Python module called
extinction, which is now a dependency.

• Model.bandflux() and Source.bandflux() now integrate on a fixed wavelength grid of 5 angstroms regard-
less of the wavelength grid of the bandpass. This will result in small differences in results from previous sncosmo
versions.

• The internal (publicly undocumented) Spectrum class now acts more like Model; in particular, its bandflux()
method now behaves the same way. As Spectrum backs SpectralMagSystem, this makes the integration of
models and zeropoint spectra more consistent.

• Experimental (non-public) support for aliases for bandpasses, such as 'SDSS::g' for 'sdssg'.

• Sources now use cubic rather than quadratic spline interpolation internally.

• Model.source_peakmag() and Model.set_source_peakmag() added as convenience functions for Model.
source.peakmag() and Model.source.set_peakmag() respectively.

• [Bugfix] Fixed missing import of math module in mcmc_lc() when using the priors keyword. [Backported
to v1.3.1] [#143]

116 Chapter 13. More. . .

http://github.com/kbarbary/sfdmap
https://github.com/sncosmo/sncosmo/issues/143

sncosmo Documentation, Release 2.6.0

13.1.15 v1.3.0 (2016-06-30)

This is mostly a bugfix release, but it also drops support for Python 2.6. Python 2.7 is now the minimum supported
Python version.

• Updates for compatibility with AstroPy 1.2.

• The registry now handles subclasses more robustly. For example, if magsys is an instance of
SpectralMagSystem, the following used to fail:

sncosmo.register(magsys, 'name')
sncosmo.get_magsystem('name')

Now this works. [#132]

• [Bugfix] SALT2Source had a bug under Python 3 (only) yielding drastically wrong fluxes. Python 2 was not
affected. [#138]

13.1.16 v1.2.0 (2015-12-01)

• [API change] Registry functions moved to the top-level namespace, as follows:

– sncosmo.registry.register() -> sncosmo.register()

– sncosmo.registry.register_loader() -> sncosmo.register_loader()

– sncosmo.registry.retrieve() -> deprecated, use class-specific functions such as sncosmo.
get_bandpass().

The old import paths will still work for backwards compatibility.

• nest_lc() now uses the nestle module under the hood. A new keyword method is available which selects
different sampling methods implemented by nestle. The new methods provide potential efficiency gains.

• The MLCS2k2 model is now available as a built-in Source, with the name 'mlcs2k2'.

• Bandpasses from the Carnegie Supernova Project added to built-ins.

• In realize_lcs(), a new scatter keyword makes adding noise optional.

• [Bugfix] Fix built-in Bessell bandpass definitions, which were wrong by a term proportional to inverse wave-
length. This was due to misinterpretation of the trasmission units. [backported to v1.1.1] [#111]

13.1.17 v1.1.0 (2015-08-12)

This is a mostly bugfix release with more solid support for Python 3.

• Added Model.color() method.

• Remove loglmax from result of nest_lc(), which was not officially documented or supported. Use np.
max(res.logl) instead.

• Fixed bug that caused non-reproducible behavior in nest_lc() even when numpy.random.seed() was called
directly beforehand. [#102]

• Fixed file I/O problems on Python 3 related to string encoding. [#83, #85]

• Fixed problem with SDSS bandpasses being stored as integers internally, preventing them from being used with
models with dust. [#100, #101]

• Fixed problem where built-in source name and version strings were being dropped. [#82]

13.1. Version History 117

https://github.com/sncosmo/sncosmo/issues/132
https://github.com/sncosmo/sncosmo/issues/138
https://github.com/sncosmo/sncosmo/issues/111
https://github.com/sncosmo/sncosmo/issues/102
https://github.com/sncosmo/sncosmo/issues/83
https://github.com/sncosmo/sncosmo/issues/85
https://github.com/sncosmo/sncosmo/issues/100
https://github.com/sncosmo/sncosmo/issues/101
https://github.com/sncosmo/sncosmo/issues/82

sncosmo Documentation, Release 2.6.0

• Minor doc fixes.

13.1.18 v1.0.0 (2015-02-23)

• [API change] The API of mcmc_lc has changed significantly (the function was marked experimental in pre-
vious release).

• [Deprecation] In result of fit_lc, res.cov_names changed to res.vparam_names.

• [Deprecation] In result of nest_lc, res.param_names changed to res.vparam_names. This is for compati-
bility between the results of fit_lc and nest_lc. [#30]

• [Deprecation] Deprecate flatten keyword argument in fit_lc() in favor of explicit use of
flatten_result() function.

• Many new built-in models.

• Many new built-in bandpasses.

• New remote data fetching system.

• SALT2 model covariance available via Model.bandfluxcov() method and modelcov=True keyword argu-
ment passed to fit_lc.

• New simulation function, zdist, generates a distribution of redshifts given a volumetric rate function and cos-
mology.

• New simulation function, realize_lcs, simulates light curve data given a model, parameters, and observations.

• Add color-related keyword arguments to plot_lc().

• Add tighten_ylim keyword argument to plot_lc().

• Add chisq() function and use internally in fit_lc().

• Add SFD98Map class for dealing with SFD (1998) dust maps persistently so that the underlying FITS files are
opened only once.

• Update get_ebv_from_map() to work with new SkyCoord class in astropy.coordinates available in as-
tropy v0.3 onward. Previously, this function did not work with astropy v0.4.x (where older coordinates classes
had been removed).

• Update to new configuration system available in astropy v0.4 onward. This makes this release incompatible with
astropy versions less than 0.4.

• Now compatible with Python 3.

• Increased test coverage.

• Numerous minor bugfixes.

13.1.19 v0.4.0 (2014-03-26)

This is non-backwards-compatible release, due to changes in the way models are defined. These changes were made
after feedback on the initial design.

The most major change is a new central class Model used throughout the pacakge. A Model instance encompasses
a Source and zero or more PropagationEffect instances. This is so that different source models (e.g., SALT2 or
spectral time series models) can be combined with arbitrary dust models. The best way to think about this is Source and
PropagationEffect define the rest-frame behavior of a SN and dust, and a Model puts these together to determine
the observer-frame behavior.

118 Chapter 13. More. . .

https://github.com/sncosmo/sncosmo/issues/30

sncosmo Documentation, Release 2.6.0

• New classes:

– sncosmo.Model: new main container class

– sncosmo.Source: replaces existing Model

– sncosmo.TimeSeriesSource: replaces existing TimeSeriesModel

– sncosmo.StretchSource: replaces existing StretchModel

– sncosmo.SALT2Source: replaces existing SALT2Model

– sncosmo.PropagationEffect

– sncosmo.CCM89Dust

– sncosmo.OD94Dust

– sncosmo.F99Dust

• New public functions:

– sncosmo.read_griddata_ascii: Read file with phase wave flux rows

– sncosmo.read_griddata_fits

– sncosmo.write_griddata_fits

– sncosmo.nest_lc: Nested sampling parameter estimation of SN model

– sncosmo.simulate_vol (EXPERIMENTAL): simulation convenience function.

• Built-ins:

– updated SALT2 model URLs

– added SALT2 version 2.4 (Betoule et al 2014)

• Improvements to sncosmo.plot_lc: flexibility and layout

• Many bugfixes

13.1.20 v0.3.0 (2013-11-07)

This is a release with mostly bugfixes but a few new features, designed to be backwards compatible with v0.2.0 ahead
of API changes coming in the next version.

• New Functions:

– sncosmo.get_ebv_from_map: E(B-V) at given coordinates from SFD map.

– sncosmo.read_snana_ascii: Read SNANA ascii format files.

– sncosmo.read_snana_fits: Read SNANA FITS format files.

– sncosmo.read_snana_simlib: Read SNANA ascii “SIMLIB” files.

• registry is now case-independent. All of the following now work:

sncosmo.get_magsystem('AB')
sncosmo.get_magsystem('Ab')
sncsomo.get_magsystem('ab')

• Photometric data can be unordered in time. Internally, the data are sorted before being used in fitting and typing.

• Numerous bugfixes.

13.1. Version History 119

sncosmo Documentation, Release 2.6.0

13.1.21 v0.2.0 (2013-08-20)

• Added SN 2011fe Nearby Supernova Factory data to built-in models as '2011fe'

• Previously “experimental” functions now included:

– sncosmo.fit_lc (previously sncosmo.fit_model)

– sncosmo.read_lc (previously sncosmo.readlc)

– sncosmo.write_lc (previously sncosmo.writelc)

– sncosmo.plot_lc (previously sncosmo.plotlc)

• New functions:

– sncosmo.load_example_data: Example photometric data.

– sncosmo.mcmc_lc: Markov Chain Monte Carlo parameter estimation.

– sncosmo.animate_model: Model animation using matplotlib.animation.

• Fitting: sncosmo.fit_lc now uses the iminuit package for minimization by default. This requires the imi-
nuit package to be installed, but the old minimizer (from scipy) can still be used by setting the keyword
method='l-bfgs-b'.

• Plotting: Ability to plot model synthetic photometry without observed data, using the syntax:

>>> sncosmo.plot_lc(model=model, bands=['band1', 'band2'])

• Photometric data format: Photometric data format is now more flexible, allowing various names for table
columns.

13.1.22 v0.1.0 (2013-07-15)

Initial release.

13.2 About SNCosmo

13.2.1 Package Features

• SN models: Synthesize supernova spectra and photometry from SN models.

• Fitting and sampling: Functions for fitting and sampling SN model parameters given photometric light curve
data.

• I/O: Convenience functions for reading and writing peculiar data formats used in other packages.

• Built-in supernova models such as SALT2, MLCS2k2, Hsiao, Nugent, PSNID, SNANA and Whalen models,
as well as a variety of built-in bandpasses and magnitude systems.

• Extensible: New models, bandpasses, and magnitude systems can be defined, using an object-oriented interface.

120 Chapter 13. More. . .

sncosmo Documentation, Release 2.6.0

13.2.2 The name SNCosmo

A natural choice, “snpy”, was already in use by the “SNooPy” package, so I tried to be a little more descriptive. The
package is really specific to supernova cosmology, as it doesn’t cover other types of supernova science (radiative transfer
simulations for instance). Hence “sncosmo”.

13.2.3 Contributors

SNCosmo was originally written by Kyle Barbary in 2012. Since then, over 20 people have contributed to its devel-
opment. A full list of contributors can be found in the CITATION.cff file. Parsed versions of the author list, including
BibTeX entries that can be used to cite SNCosmo, are available on GitHub and Zenodo.

13.3 Contributing

13.3.1 Overview

SNCosmo follows the same general development workflow as astropy and many other open-source software projects.
The astropy development workflow page documents the process in some detail. While you should indeed read that
page, it can seem a bit overwhelming at first. So, we present here a rough outline of the process, and try to explain the
reasoning behind it.

The process is centered around git and GitHub, so you need to know how to use basic git commands and also have
a GitHub account. There is a “blessed” copy of the repository at https://github.com/sncosmo/sncosmo. Individual
contributors make changes to their own copy (or “fork” or “clone” in git parlance) of the repository, e.g., https://
github.com/kbarbary/sncosmo, then ask that their changes be merged into the “blessed” copy via a Pull Request (PR)
on GitHub. A maintainer (currently Kyle) will review the changes in the PR, possibly ask for alterations, and then
eventually merge the change.

This seems overly complex at first glance, but there are two main benefits to this process: (1) Anyone is free to try out
any crazy change they want and share it with the world on their own GitHub account, without affecting the “blessed”
repository, and (2) Any proposed changes are reviewed and discussed by at least one person (the maintainer) before
being merged in.

13.3.2 Detailed steps

Do once:

1. Hit the “fork” button in the upper right hand corner of the https://github.com/sncosmo/sncosmo page. This
creates a clone of the repository on your personal github account.

2. Get it onto your computer (replace username with your GitHub username):

git clone git@github.com:username/sncosmo.git

3. Add the “blessed” version as a remote:

git remote add upstream git@github.com:sncosmo/sncosmo.git

This will allow you to update your version to reflect new changes to the blessed repository that others have made).

4. Check that everything is OK:

13.3. Contributing 121

https://github.com/sncosmo/sncosmo/blob/master/CITATION.cff
https://github.com/sncosmo/sncosmo
https://doi.org/10.5281/zenodo.592747
http://astropy.readthedocs.org/en/v0.4.1/development/workflow/development_workflow.html
https://github.com/sncosmo/sncosmo
https://github.com/kbarbary/sncosmo
https://github.com/kbarbary/sncosmo
https://github.com/sncosmo/sncosmo

sncosmo Documentation, Release 2.6.0

$ git remote -v
origin git@github.com:username/sncosmo.git (fetch)
origin git@github.com:username/sncosmo.git (push)
upstream git@github.com:sncosmo/sncosmo.git (fetch)
upstream git@github.com:sncosmo/sncosmo.git (push)

You can call the remotes anything you want. “origin” and “upstream” have no intrinsic meaning for git; they’re
just nicknames. The astropy documentation calls them “your-github-username” and “astropy” respectively.

5. Install the SNCosmo package in development mode. From the git directory:

pip install -e .

If you are only editing Python code, the latest code will be used when you import sncosmo in a Python interpreter
for the first time. If you are editing any of the Cython code in SNCosmo (files with .c or .pyx extensions), then
you will need to run this command again to compile that code for your changes to be picked up.

Every time you want to make a contribution:

1. Ensure that the clone of the repository on your local machine is up-to-date with the latest upstream changes by
doing git fetch upstream. This updates your local “remote tracking branch”, called upstream/master.

2. Create a “topic branch” for the change you want to make. If you plan to make enhancements to the simulation
code, name the branch something like “simulation-enhancements”:

git branch simulation-enhancements upstream/master

(upstream/master is where the branch branches off from.)

3. Move to the branch you just created:

git checkout simulation-enhancements

4. Make changes, ensure that they work, etc. Make commits as you go.

5. Once you’re happy with the state of your branch, push it to your GitHub account for the world to see:

git push origin simulation-enhancements

6. Create a PR: Go to your copy on github (https://github.com/username/sncosmo) select the branch you just pushed
in the upper left-ish of the page, and hit the green button next to it. (It has a mouse-over “compare, review, create
a pull request”)

What happens when the upstream branch is updated?

Suppose that you are following the above workflow: you created a topic branch simulation-enhancements and
made a few commits on that branch. You now want to create a pull request, but there’s a problem: while you were
working, more commmits were added to the upstream/master branch on GitHub. The history of your branch has
now diverged from the main development branch! What to do?

1. Fetch the changes made to the upstream branch on so that you can deal with the changes locally:

git fetch upstream

122 Chapter 13. More. . .

https://github.com/username/sncosmo

sncosmo Documentation, Release 2.6.0

This will update your local branch upstream/master (and any other upstream branches) to the match the
state of the upstream branch on GitHub. It doesn’t do any merging or resolving, it just makes the new changes
to upstream/master visible locally.

2. There are two options for this next step: merge or rebase with the latter being preferred for this purpose.
Assuming you are on your branch simulation-enhancements, you could do git merge upstream/master.
This would create a merge commit that merges the diverged histories back together. This works, but it can end
up creating a confusing commit history, particularly if you repeat this process several times while working on
your new branch. Instead, you can do:

git rebase upstream/master

This actually rewrites your commits to make it look like they started from where upstream/master now is,
rather than where it was when you started work on your simulation-enhancements branch. Your branch will
have the exact same contents as if you had used git merge, but the history will be different than it would have
been if you had merged. In particular, there is no merge commit created, because the history has been rewritten so
that your branch starts where upstream/master ends, and there is no divergent history to resolve. This means
you can rebase again and again without creating a convoluted history full of merges back and forth between the
branches.

Trying out new ideas

git branches are the best way to try out new ideas for code modifications or additions. You don’t even have to tell anyone
about your bad ideas, since branches are local! They only become world visible when you push them to GitHub. If, after
making several commits, you decide that your new branch simulation-enhancements sucks, you can just create a
new branch starting from upstream/master again. If it is a really terrible idea you never want to see again, you can
delete it by doing git branch -D simulation-enhancements.

Obviously this isn’t a complete guide to git, but hopefully it jump-starts the git learning process.

13.3.3 Testing

SNCosmo uses pytest to check that all of the code is running as expected. When you add new functionality to SNCosmo,
you should write a test for that functionality. All of the tests can be found in the sncosmo/tests directory.

When a new PR is created, the testsuite will be run automatically on a range of different machines and conditions using
tox. You can run these same tests locally using tox. First, install tox:

pip install tox

From within the SNCosmo directory, run the test suite:

tox -e py3

The previous command will run the core test suite with the currently installed version of Python. You can run the full
test suite with all of the optional dependencies by adding the -alldeps tag:

tox -e py3-alldeps

Running the tests with the -cov tag will generate a coverage report:

tox -e py3-cov

SNCosmo includes hundreds of builtin bandpasses and sources that are downloaded from external sites when they are
loaded. tox can be used to check that all of these builtins are accessible with the following command:

13.3. Contributing 123

sncosmo Documentation, Release 2.6.0

tox -e builtins

tox can also be used to check the code style:

tox -e codestyle

or to build the documentation:

tox -e build_docs

tox uses virtual environments for testing which can be somewhat slow. You can alternatively run the test in your own
Python environment. First, install all of the testing dependencies from the test section of setup.cfg. This can be
done automatically when installing SNCosmo with the following command:

pip install -e .[test]

The tests can then be run with the following command:

pytest --pyargs sncosmo

13.3.4 Developer’s documentation: release procedure

The release procedure is automated through GitHub Actions. To create a new release:

• Update docs/history.rst with a summary of the new version’s changes.

• Bump version in sncosmo/__init__.py.

• Ensure that the tests have all completed successfully and that the docs are looking good.

• Create a new release through the releases tab on GitHub, and tag it with the latest version.

• Copy the change list into the release description.

• Publish the release.

Packaging and Docs

• GitHub Actions will trigger after each release and build compiled wheels and source distributions. These will
then be pushed to PyPI.

• A conda build should start (with some delay) via a bot pull request at https://github.com/conda-forge/
sncosmo-feedstock. Merge the PR once it passes all tests.

• The docs for the release will show up on readthedocs.org as the new stable version.

• Check out the source code: https://github.com/sncosmo/sncosmo

• Report bugs, request features: https://github.com/sncosmo/sncosmo/issues

• User & developer mailing list: https://groups.google.com/forum/#!forum/sncosmo

124 Chapter 13. More. . .

https://github.com/conda-forge/sncosmo-feedstock
https://github.com/conda-forge/sncosmo-feedstock
https://github.com/sncosmo/sncosmo
https://github.com/sncosmo/sncosmo/issues
https://groups.google.com/forum/#!forum/sncosmo

BIBLIOGRAPHY

[N02] Nugent, Kim & Permutter 2002

[S04] Stern, et al. 2004

[L05] Levan et al. 2005

[G99] Gilliland, Nugent & Phillips 1999

[S11] Sako et al. 2011

[H07] Hsiao et al. 2007

[G10] Guy et al. 2010

[B14b] Betoule et al. 2014

[H17] Hounsell et al. 2017

[P13] Pereira et al. 2013

[Whalen13] Whalen et al. 2013

[Jha07] Jha, Riess and Kirshner 2007

[Saunders18] Saunders et al. 2018

[Leget20] Leget et al. 2020

[1] extracted from SNANA’s SNDATA_ROOT on 29 March 2013.

[2] extracted from the SNooPy package on 21 Dec 2012.

[3] extracted from SNANA’s SNDATA_ROOT on 15 August 2013.

[4] See Kenworthy et al. 2021, ApJ, submitted.

[5] extracted from SNANA’s SNDATA_ROOT on 24 April 2018. SALT2 model with wide wavelength range,
Hounsell et al. 2017

[6] extracted from SNANA’s SNDATA_ROOT on 5 August 2014.

[7] Templates from Vincenzi et al. 19. Each template is extended in the ultraviolet (1600AA) and in the near
infrared (10000AA). Each template can be used in its original version (v19-sn-name) or in its host dust
extinction corrected version (v19-sn-name-corr).

[8] private communication (D.Whalen, May 2014).

[9] In MLCS2k2 language, this version corresponds to “MLCS2k2 v0.07 rv19-early-smix vectors”

[B90] Bessell 1990, Table 2

[B14a] Betoule et al. (2014), Footnote 21

125

http://adsabs.harvard.edu/abs/2002PASP..114..803N
http://adsabs.harvard.edu/abs/2004ApJ...612..690S
http://adsabs.harvard.edu/abs/2005ApJ...624..880L
http://adsabs.harvard.edu/abs/1999ApJ...521...30G
http://adsabs.harvard.edu/abs/2011ApJ...738..162S
http://adsabs.harvard.edu/abs/2007ApJ...663.1187H
http://adsabs.harvard.edu/abs/2010A%26A...523A...7G
http://adsabs.harvard.edu/abs/2014A%26A...568A..22B
http://adsabs.harvard.edu/abs/2017arXiv170201747H
http://adsabs.harvard.edu/abs/2013A%26A...554A..27P
http://adsabs.harvard.edu/abs/2013ApJ...768...95W
http://adsabs.harvard.edu/abs/2007ApJ...659..122J
https://arxiv.org/abs/1810.09476
https://doi.org/10.1051/0004-6361/201834954
http://adsabs.harvard.edu/abs/1990PASP..102.1181B
http://adsabs.harvard.edu/abs/2014A%26A...568A..22B

sncosmo Documentation, Release 2.6.0

[D10] Doi et al. 2010, Table 4

[T12] Tonry 2012, Table 3

126 Bibliography

http://adsabs.harvard.edu/abs/2010AJ....139.1628D
http://adsabs.harvard.edu/abs/2012ApJ...750...99T

PYTHON MODULE INDEX

b
bandpass_page, 95

m
magsystem_page, 109

p
photdata_aliases_table, 18

s
source_page, 90

127

sncosmo Documentation, Release 2.6.0

128 Python Module Index

INDEX

Symbols
__init__() (sncosmo.ABMagSystem method), 64
__init__() (sncosmo.AggregateBandpass method), 61
__init__() (sncosmo.Bandpass method), 61
__init__() (sncosmo.BandpassInterpolator method),

63
__init__() (sncosmo.CCM89Dust method), 58
__init__() (sncosmo.CompositeMagSystem method),

65
__init__() (sncosmo.F99Dust method), 59
__init__() (sncosmo.MLCS2k2Source method), 50
__init__() (sncosmo.MagSystem method), 63
__init__() (sncosmo.Model method), 44
__init__() (sncosmo.OD94Dust method), 58
__init__() (sncosmo.PropagationEffect method), 57
__init__() (sncosmo.SALT2Source method), 51
__init__() (sncosmo.SALT3Source method), 53
__init__() (sncosmo.SNEMOSource method), 54
__init__() (sncosmo.SUGARSource method), 56
__init__() (sncosmo.Source method), 46
__init__() (sncosmo.SpectralMagSystem method), 64
__init__() (sncosmo.Spectrum method), 74
__init__() (sncosmo.StretchSource method), 48
__init__() (sncosmo.TimeSeriesSource method), 47

A
ABMagSystem (class in sncosmo), 64
AggregateBandpass (class in sncosmo), 61

B
Bandpass (class in sncosmo), 60
bandpass_page

module, 95
BandpassInterpolator (class in sncosmo), 62

C
CCM89Dust (class in sncosmo), 58
chisq() (in module sncosmo), 82
CompositeMagSystem (class in sncosmo), 65

F
F99Dust (class in sncosmo), 59

fit_lc() (in module sncosmo), 75
flatten_result() (in module sncosmo), 82

G
get_bandpass() (in module sncosmo), 88
get_magsystem() (in module sncosmo), 88
get_source() (in module sncosmo), 88

L
load_example_data() (in module sncosmo), 68
load_example_spectrum_data() (in module

sncosmo), 69

M
MagSystem (class in sncosmo), 63
magsystem_page

module, 109
mcmc_lc() (in module sncosmo), 77
MLCS2k2Source (class in sncosmo), 49
Model (class in sncosmo), 44
module

bandpass_page, 95
magsystem_page, 109
photdata_aliases_table, 18
source_page, 90

N
nest_lc() (in module sncosmo), 79

O
OD94Dust (class in sncosmo), 58

P
photdata_aliases_table

module, 18
plot_lc() (in module sncosmo), 82
PropagationEffect (class in sncosmo), 57

R
read_bandpass() (in module sncosmo), 68
read_griddata_ascii() (in module sncosmo), 72

129

sncosmo Documentation, Release 2.6.0

read_griddata_fits() (in module sncosmo), 72
read_lc() (in module sncosmo), 66
read_snana_ascii() (in module sncosmo), 69
read_snana_fits() (in module sncosmo), 70
read_snana_simlib() (in module sncosmo), 71
realize_lcs() (in module sncosmo), 86
register() (in module sncosmo), 87
register_loader() (in module sncosmo), 87

S
SALT2Source (class in sncosmo), 51
SALT3Source (class in sncosmo), 52
select_data() (in module sncosmo), 81
SNEMOSource (class in sncosmo), 54
Source (class in sncosmo), 46
source_page

module, 90
SpectralMagSystem (class in sncosmo), 64
Spectrum (class in sncosmo), 73
StretchSource (class in sncosmo), 48
SUGARSource (class in sncosmo), 55

T
TimeSeriesSource (class in sncosmo), 47

W
write_griddata_ascii() (in module sncosmo), 73
write_griddata_fits() (in module sncosmo), 73
write_lc() (in module sncosmo), 67

Z
zdist() (in module sncosmo), 85

130 Index

	Installation
	Install using conda (recommended)
	Install using pip
	Install latest development version
	Optional dependencies

	Supernova Models
	Getting Started
	Creating a model using a built-in source
	Model parameters
	Creating a model with a source and effect(s)
	Adding Milky Way dust
	Model spectrum
	Synthetic photometry
	Initializing Sources directly
	Initializing a TimeSeriesSource
	Initializing a SALT2Source

	Bandpasses
	Constructing a Bandpass
	Using a Bandpass
	Adding Bandpasses to the Registry

	Magnitude Systems
	“Composite” magnitude systems

	Photometric Data
	Photometric data stored in AstroPy Table
	Including Covariance
	Flexible column names
	Reading and Writing photometric data from files
	Manipulating data tables

	Spectra
	Uncertainties
	Synthetic photometry
	Rebinning a spectrum
	Fitting with spectra

	Applying Cuts
	Signal-to-noise ratio cuts

	Simulation
	Generating SN parameters

	Registry
	What is it?
	Using the registry to achieve custom “built-ins”
	Changing the name of built-ins
	Large built-ins

	Directory Configuration
	Configuring the Directories

	Examples
	Fitting a light curve
	Using a custom fitter or sampler
	Creating a new Source class
	Examples
	Reference / API
	Model & Components
	sncosmo.Model
	sncosmo.Source
	sncosmo.TimeSeriesSource
	sncosmo.StretchSource
	sncosmo.MLCS2k2Source
	sncosmo.SALT2Source
	sncosmo.SALT3Source
	sncosmo.SNEMOSource
	sncosmo.SUGARSource
	sncosmo.PropagationEffect
	sncosmo.CCM89Dust
	sncosmo.OD94Dust
	sncosmo.F99Dust

	Bandpass & Magnitude Systems
	sncosmo.Bandpass
	sncosmo.AggregateBandpass
	sncosmo.BandpassInterpolator
	sncosmo.MagSystem
	sncosmo.ABMagSystem
	sncosmo.SpectralMagSystem
	sncosmo.CompositeMagSystem

	I/O
	sncosmo.read_lc
	sncosmo.write_lc
	sncosmo.read_bandpass
	sncosmo.load_example_data
	sncosmo.load_example_spectrum_data
	sncosmo.read_snana_ascii
	sncosmo.read_snana_fits
	sncosmo.read_snana_simlib
	sncosmo.read_griddata_ascii
	sncosmo.read_griddata_fits
	sncosmo.write_griddata_ascii
	sncosmo.write_griddata_fits

	Spectra
	sncosmo.Spectrum

	Fitting Photometric Data
	sncosmo.fit_lc
	sncosmo.mcmc_lc
	sncosmo.nest_lc
	sncosmo.select_data
	sncosmo.chisq
	sncosmo.flatten_result

	Plotting
	sncosmo.plot_lc

	Simulation
	sncosmo.zdist
	sncosmo.realize_lcs

	Registry
	sncosmo.register
	sncosmo.register_loader
	sncosmo.get_source
	sncosmo.get_bandpass
	sncosmo.get_magsystem

	Class Inheritance Diagrams

	List of Built-in Sources
	List of Built-in Bandpasses
	bessell
	snls3-landolt
	des
	sdss
	acs
	nicmos-nic2
	wfc3-ir
	wfc3-uvis
	kepler
	csp
	jwst-nircam
	jwst-miri
	jwst-miri-tophat
	lsst
	keplercam
	4shooter2
	roman-wfi
	ztf
	swift-uvot
	ps1
	megacampsf

	List of Built-in Magnitude Systems

	Reference / API
	More…
	Version History
	v2.6.0 (2021-09-09)
	v2.5.0 (2021-04-20)
	v2.4.0 (2021-03-05)
	v2.3.0 (2020-11-16)
	v2.2.0 (2020-10-23)
	v2.1.0 (2020-02-25)
	v2.0.0 (2019-06-08)
	v1.8.2 (2019-06-08)
	v1.8.1 (2019-06-08)
	v1.8.0 (2019-05-25)
	v1.7.0 (2019-02-02)
	v1.6.0 (2018-04-27)
	v1.5.0 (2017-04-20)
	v1.4.0 (2016-11-16)
	v1.3.0 (2016-06-30)
	v1.2.0 (2015-12-01)
	v1.1.0 (2015-08-12)
	v1.0.0 (2015-02-23)
	v0.4.0 (2014-03-26)
	v0.3.0 (2013-11-07)
	v0.2.0 (2013-08-20)
	v0.1.0 (2013-07-15)

	About SNCosmo
	Package Features
	The name SNCosmo
	Contributors

	Contributing
	Overview
	Detailed steps
	Do once:
	Every time you want to make a contribution:
	What happens when the upstream branch is updated?
	Trying out new ideas

	Testing
	Developer’s documentation: release procedure

	Bibliography
	Python Module Index
	Index

